directly include only the header files needed. This reduces the
unneeded spamming of various headers into lots of files.
For now, this leaves us with very few modules including vnet.h
and thus needing to depend on opt_route.h.
Reviewed by: brooks, gnn, des, zec, imp
Sponsored by: The FreeBSD Foundation
from the vimage project, as per plan established at devsummit 08/08:
http://wiki.freebsd.org/Image/Notes200808DevSummit
Introduce INIT_VNET_*() initializer macros, VNET_FOREACH() iterator
macros, and CURVNET_SET() context setting macros, all currently
resolving to NOPs.
Prepare for virtualization of selected SYSCTL objects by introducing a
family of SYSCTL_V_*() macros, currently resolving to their global
counterparts, i.e. SYSCTL_V_INT() == SYSCTL_INT().
Move selected #defines from sys/sys/vimage.h to newly introduced header
files specific to virtualized subsystems (sys/net/vnet.h,
sys/netinet/vinet.h etc.).
All the changes are verified to have zero functional impact at this
point in time by doing MD5 comparision between pre- and post-change
object files(*).
(*) netipsec/keysock.c did not validate depending on compile time options.
Implemented by: julian, bz, brooks, zec
Reviewed by: julian, bz, brooks, kris, rwatson, ...
Approved by: julian (mentor)
Obtained from: //depot/projects/vimage-commit2/...
X-MFC after: never
Sponsored by: NLnet Foundation, The FreeBSD Foundation
virtualization work done by Marko Zec (zec@).
This is the first in a series of commits over the course
of the next few weeks.
Mark all uses of global variables to be virtualized
with a V_ prefix.
Use macros to map them back to their global names for
now, so this is a NOP change only.
We hope to have caught at least 85-90% of what is needed
so we do not invalidate a lot of outstanding patches again.
Obtained from: //depot/projects/vimage-commit2/...
Reviewed by: brooks, des, ed, mav, julian,
jamie, kris, rwatson, zec, ...
(various people I forgot, different versions)
md5 (with a bit of help)
Sponsored by: NLnet Foundation, The FreeBSD Foundation
X-MFC after: never
V_Commit_Message_Reviewed_By: more people than the patch
- Remove also "MP SAFE" after prior "MPSAFE" pass. (suggested by bde)
- Remove extra blank lines in some cases.
- Add extra blank lines in some cases.
- Remove no-op comments consisting solely of the function name, the word
"syscall", or the system call name.
- Add punctuation.
- Re-wrap some comments.
so that UUIDs can be generated from within the kernel. The uuidgen(2)
syscall now allocates kernel memory, calls the generator, and does a
copyout() for the whole UUID store. This change is in support of GPT.
In case no real/physical IEEE 802 address is available, both the expired
"draft-leach-uuids-guids-01" (section "4. Node IDs when no IEEE 802
network card is available") and RFC 2518 (section "6.4.1 Node Field
Generation Without the IEEE 802 Address") recommend (quoted from RFC
2518):
"The ideal solution is to obtain a 47 bit cryptographic quality random
number, and use it as the low 47 bits of the node ID, with the _most_
significant bit of the first octet of the node ID set to 1. This bit
is the unicast/multicast bit, which will never be set in IEEE 802
addresses obtained from network cards; hence, there can never be a
conflict between UUIDs generated by machines with and without network
cards."
Unfortunately, this incorrectly explains how to implement this and
the FreeBSD UUID generator code inherited this generation bug from
the broken reference code in the standards draft. They should instead
specify the "_least_ significant bit of the first octet of the node ID"
as the multicast bit in a memory and hexadecimal string representation
of a 48-bit IEEE 802 MAC address.
This standards bug arised from a false interpretation, as the multicast
bit is actually the _most_ significant bit in IEEE 802.3 (Ethernet)
_transmission order_ of an IEEE 802 MAC address. The standards authors
forgot that the bitwise order of an _octet_ from a MAC address _memory_
and hexadecimal string representation is still always from left (MSB,
bit 7) to right (LSB, bit 0).
Fortunately, this UUID generation bug could have occurred on systems
without any Ethernet NICs only.
The uuidgen command, by means of the uuidgen syscall, generates one
or more Universally Unique Identifiers compatible with OSF/DCE 1.1
version 1 UUIDs.
From the Perforce logs (change 11995):
Round of cleanups:
o Give uuidgen() the correct prototype in syscalls.master
o Define struct uuid according to DCE 1.1 in sys/uuid.h
o Use struct uuid instead of uuid_t. The latter is defined
in sys/uuid.h but should not be used in kernel land.
o Add snprintf_uuid(), printf_uuid() and sbuf_printf_uuid()
to kern_uuid.c for use in the kernel (currently geom_gpt.c).
o Rename the non-standard struct uuid in kern/kern_uuid.c
to struct uuid_private and give it a slightly better definition
for better byte-order handling. See below.
o In sys/gpt.h, fix the broken uuid definitions to match the now
compliant struct uuid definition. See below.
o In usr.bin/uuidgen/uuidgen.c catch up with struct uuid change.
A note about byte-order:
The standard failed to provide a non-conflicting and
unambiguous definition for the binary representation. My initial
implementation always wrote the timestamp as a 64-bit little-endian
(2s-complement) integral. The clock sequence was always written
as a 16-bit big-endian (2s-complement) integral. After a good
nights sleep and couple of Pan Galactic Gargle Blasters (not
necessarily in that order :-) I reread the spec and came to the
conclusion that the time fields are always written in the native
by order, provided the the low, mid and hi chopping still occurs.
The spec mentions that you "might need to swap bytes if you talk
to a machine that has a different byte-order". The clock sequence
is always written in big-endian order (as is the IEEE 802 address)
because its division is resulting in bytes, making the ordering
unambiguous.