the callers if the exec either succeeds or fails early.
- Move the code to call exit1() if the exec fails after the vmspace is
gone to the bottom of kern_execve() to cut down on some code duplication.
with flags bitfield and set BI_CAN_EXEC_DYN flag for all brands that usually
allow executing elf dynamic binaries (aka shared libraries). When it is
requested to execute ET_DYN elf image check if this flag is on after we
know the elf brand allowing execution if so.
PR: kern/87615
Submitted by: Marcin Koziej <creep@desk.pl>
which existed to cleanup the linux_osname mutex. Now that MTX_SYSINIT()
has grown a SYSUNINIT to destroy mutexes on unload, the extra destroy here
was redundant and resulted in panics in debug kernels.
MFC after: 1 week
Reported by: Goran Gajic ggajic at afrodita dot rcub dot bg dot ac dot yu
changes in MD code are trivial, before this change, trapsignal and
sendsig use discrete parameters, now they uses member fields of
ksiginfo_t structure. For sendsig, this change allows us to pass
POSIX realtime signal value to user code.
2. Remove cpu_thread_siginfo, it is no longer needed because we now always
generate ksiginfo_t data and feed it to libpthread.
3. Add p_sigqueue to proc structure to hold shared signals which were
blocked by all threads in the proc.
4. Add td_sigqueue to thread structure to hold all signals delivered to
thread.
5. i386 and amd64 now return POSIX standard si_code, other arches will
be fixed.
6. In this sigqueue implementation, pending signal set is kept as before,
an extra siginfo list holds additional siginfo_t data for signals.
kernel code uses psignal() still behavior as before, it won't be failed
even under memory pressure, only exception is when deleting a signal,
we should call sigqueue_delete to remove signal from sigqueue but
not SIGDELSET. Current there is no kernel code will deliver a signal
with additional data, so kernel should be as stable as before,
a ksiginfo can carry more information, for example, allow signal to
be delivered but throw away siginfo data if memory is not enough.
SIGKILL and SIGSTOP have fast path in sigqueue_add, because they can
not be caught or masked.
The sigqueue() syscall allows user code to queue a signal to target
process, if resource is unavailable, EAGAIN will be returned as
specification said.
Just before thread exits, signal queue memory will be freed by
sigqueue_flush.
Current, all signals are allowed to be queued, not only realtime signals.
Earlier patch reviewed by: jhb, deischen
Tested on: i386, amd64
exec_copyin_strings() to catch up to rev 1.266 of kern_exec.c. This fixes
panics on amd64 with compat binaries since exec_free_args() was freeing
more memory than these functions were allocating and the mismatch could
cause memory to be freed out from under other concurrent execs.
Approved by: re (scottl)
audit event identifier associated with each system call, which will
be stored by makesyscalls.sh in the sy_auevent field of struct sysent.
For now, default the audit identifier on all system calls to AUE_NULL,
but in the near future, other BSM event identifiers will be used. The
mapping of system calls to event identifiers is many:one due to
multiple system calls that map to the same end functionality across
compatibility wrappers, ABI wrappers, etc.
Submitted by: wsalamon
Obtained from: TrustedBSD Project
validation error in procfs/linprocfs that can be exploited by local
users to cause a kernel panic. All versions of FreeBSD with the patch
referenced in SA-04:17.procfs have this bug, but versions without that
patch have a more serious bug instead. This problem only affects
systems on which procfs or linprocfs is mounted.
Found by: Coverity Prevent analysis tool
Security: Local DOS
pointers in argv and envv in userland and use that together with
kern_execve() and exec_free_args() to implement linux_execve() for the
amd64/linux32 ABI without using the stackgap.
- Implement linux_nanosleep() using the recently added kern_nanosleep().
- Use linux_emul_convpath() instead of linux_emul_find() in
exec_linux_imgact_try().
Tested by: cokane
Silence on: amd64
copies arguments into the kernel space and one that operates
completely in the kernel space;
o use kernel-only version of execve(2) to kill another stackgap in
linuxlator/i386.
Obtained from: DragonFlyBSD (partially)
MFC after: 2 weeks
the raw values including for child process statistics and only compute the
system and user timevals on demand.
- Fix the various kern_wait() syscall wrappers to only pass in a rusage
pointer if they are going to use the result.
- Add a kern_getrusage() function for the ABI syscalls to use so that they
don't have to play stackgap games to call getrusage().
- Fix the svr4_sys_times() syscall to just call calcru() to calculate the
times it needs rather than calling getrusage() twice with associated
stackgap, etc.
- Add a new rusage_ext structure to store raw time stats such as tick counts
for user, system, and interrupt time as well as a bintime of the total
runtime. A new p_rux field in struct proc replaces the same inline fields
from struct proc (i.e. p_[isu]ticks, p_[isu]u, and p_runtime). A new p_crux
field in struct proc contains the "raw" child time usage statistics.
ruadd() has been changed to handle adding the associated rusage_ext
structures as well as the values in rusage. Effectively, the values in
rusage_ext replace the ru_utime and ru_stime values in struct rusage. These
two fields in struct rusage are no longer used in the kernel.
- calcru() has been split into a static worker function calcru1() that
calculates appropriate timevals for user and system time as well as updating
the rux_[isu]u fields of a passed in rusage_ext structure. calcru() uses a
copy of the process' p_rux structure to compute the timevals after updating
the runtime appropriately if any of the threads in that process are
currently executing. It also now only locks sched_lock internally while
doing the rux_runtime fixup. calcru() now only requires the caller to
hold the proc lock and calcru1() only requires the proc lock internally.
calcru() also no longer allows callers to ask for an interrupt timeval
since none of them actually did.
- calcru() now correctly handles threads executing on other CPUs.
- A new calccru() function computes the child system and user timevals by
calling calcru1() on p_crux. Note that this means that any code that wants
child times must now call this function rather than reading from p_cru
directly. This function also requires the proc lock.
- This finishes the locking for rusage and friends so some of the Giant locks
in exit1() and kern_wait() are now gone.
- The locking in ttyinfo() has been tweaked so that a shared lock of the
proctree lock is used to protect the process group rather than the process
group lock. By holding this lock until the end of the function we now
ensure that the process/thread that we pick to dump info about will no
longer vanish while we are trying to output its info to the console.
Submitted by: bde (mostly)
MFC after: 1 month
with the COMPAT_LINUX32 option. This is largely based on the i386 MD Linux
emulations bits, but also builds on the 32-bit FreeBSD and generic IA-32
binary emulation work.
Some of this is still a little rough around the edges, and will need to be
revisited before 32-bit and 64-bit Linux emulation support can coexist in
the same kernel.