Split subr_clock.c in two parts (by repo-copy):
subr_clock.c contains generic RTC and calendaric stuff. etc.
subr_rtc.c contains the newbus'ified RTC interface.
Centralize the machdep.{adjkerntz,disable_rtc_set,wall_cmos_clock}
sysctls and associated variables into subr_clock.c. They are
not machine dependent and we have generic code that relies on being
present so they are not even optional.
passing a pointer to an opaque clockframe structure and requiring the
MD code to supply CLKF_FOO() macros to extract needed values out of the
opaque structure, just pass the needed values directly. In practice this
means passing the pair (usermode, pc) to hardclock() and profclock() and
passing the boolean (usermode) to hardclock_cpu() and hardclock_process().
Other details:
- Axe clockframe and CLKF_FOO() macros on all architectures. Basically,
all the archs were taking a trapframe and converting it into a clockframe
one way or another. Now they can just extract the PC and usermode values
directly out of the trapframe and pass it to fooclock().
- Renamed hardclock_process() to hardclock_cpu() as the latter is more
accurate.
- On Alpha, we now run profclock() at hz (profhz == hz) rather than at
the slower stathz.
- On Alpha, for the TurboLaser machines that don't have an 8254
timecounter, call hardclock() directly. This removes an extra
conditional check from every clock interrupt on Alpha on the BSP.
There is probably room for even further pruning here by changing Alpha
to use the simplified timecounter we use on x86 with the lapic timer
since we don't get interrupts from the 8254 on Alpha anyway.
- On x86, clkintr() shouldn't ever be called now unless using_lapic_timer
is false, so add a KASSERT() to that affect and remove a condition
to slightly optimize the non-lapic case.
- Change prototypeof arm_handler_execute() so that it's first arg is a
trapframe pointer rather than a void pointer for clarity.
- Use KCOUNT macro in profclock() to lookup the kernel profiling bucket.
Tested on: alpha, amd64, arm, i386, ia64, sparc64
Reviewed by: bde (mostly)
nearly identical to wintel/ia32, with a couple of tweaks. Since it is
so similar to ia32, it is optionally added to a i386 kernel. This
port is preliminary, but seems to work well. Further improvements
will improve the interaction with syscons(4), port Linux nforce driver
and future versions of the xbox.
This supports the 64MB and 128MB boxes. You'll need the most recent
CVS version of Cromwell (the Linux BIOS for the XBOX) to boot.
Rink will be maintaining this port, and is interested in feedback.
He's setup a website http://xbox-bsd.nl to report the latest
developments.
Any silly mistakes are my fault.
Submitted by: Rink P.W. Springer rink at stack dot nl and
Ed Schouten ed at fxq dot nl
- Make sure timer0_max_count is set to a correct value in the lapic case.
- Revert i8254_restore() to explicitly reprogram timer 0 rather than
calling set_timer_freq() to do it. set_timer_freq() only reprograms
the counter if the max count changes which it never does on resume. This
unbreaks suspend/resume for several people.
Tested by: marks, others
Reviewed by: bde
MFC after: 3 days
copied and pasted. I had actually tested without this change in my
trees as had the other testers.
Reported by: bde, Rostislav Krasny rosti dot bsd at gmail dot com
Approved by: re (scottl)
Pointy hat to: jhb
timer since irq0 isn't being driven at hz in that case and we don't need to
try to handle edge cases with rollover, etc. that require irq0 to be firing
for the timecounter to actually work.
Submitted by: phk
Tested by: schweikh
Approved by: re (scottl)
i8253reg.h, and add some defines to control a speaker.
- Move PPI related defines from i386/isa/spkr.c into ppireg.h and use them.
- Move IO_{PPI,TIMER} defines into ppireg.h and timerreg.h respectively.
- Use isa/isareg.h rather than <arch>/isa/isa.h.
Tested on: i386, pc98
Instead, explicitly enable them when we setup the interrupt handler.
Also, move the setting of stathz and profhz down to the same place so
that the code flow is simpler and easier to follow.
- Don't setup an interrupt handler for IRQ0 if we are using the lapic timer
as it doesn't do anything productive in that case.
rather than forwarding interrupts from the clock devices around using IPIs:
- Add an IDT vector that pushes a clock frame and calls
lapic_handle_timer().
- Add functions to program the local APIC timer including setting the
divisor, and setting up the timer to either down a periodic countdown
or one-shot countdown.
- Add a lapic_setup_clock() function that the BSP calls from
cpu_init_clocks() to setup the local APIC timer if it is going to be
used. The setup uses a one-shot countdown to calibrate the timer. We
then program the timer on each CPU to fire at a frequency of hz * 3.
stathz is defined as freq / 23 (hz * 3 / 23), and profhz is defined as
freq / 2 (hz * 3 / 2). This gives the clocks relatively prime divisors
while keeping a low LCM for the frequency of the clock interrupts.
Thanks to Peter Jeremy for suggesting this approach.
- Remove the hardclock and statclock forwarding code including the two
associated IPIs. The bitmap IPI handler has now effectively degenerated
to just IPI_AST.
- When the local APIC timer is used we don't turn the RTC on at all, but
we still enable interrupts on the ISA timer 0 (i8254) for timecounting
purposes.
interrupts, read from the interrupt status register to clear any pending
interrupts. Otherwise in some rare cases the RTC would never fire any
interrupts as it constantly thinks it has an interrupt pending.
PR: i386/17800
PR: kern/76776
Submitted by: Jose M. Alcaide jose at we dot lc dot ehu dot es
MFC after: 2 weeks
a problem that could also be fixed differently without reverting previous
attempts to fix DELAY while the debugger is active (rev 1.204). The bug
was that the i8254 implements a countdown timer, while for (k)db_active
a countup timer was implemented. This resulted in premature termination
and consequently the breakage of DELAY. The fix (relative to rev 1.211)
is to implement a countdown timer for the kdb_active case. As such the
ability to step clock initialization is preserved and DELAY does what is
expected of it.
Blushed: bde :-)
Submitted by: bde
debugger is not active. The fixes breakages of DELAY() when
running in the debugger, because not calling getit() when the
debugger is active yields a DELAY that doesn't.
correct interrupt source.
- Cache a pointer to the i8254_intsrc's pending method to avoid several
pointer indirections in i8254_get_timecount().
Reported by: bde
- The apic interrupt entry points have been rewritten so that each entry
point can serve 32 different vectors. When the entry is executed, it
uses one of the 32-bit ISR registers to determine which vector in its
assigned range was triggered. Thus, the apic code can support 159
different interrupt vectors with only 5 entry points.
- We now always to disable the local APIC to work around an errata in
certain PPros and then re-enable it again if we decide to use the APICs
to route interrupts.
- We no longer map IO APICs or local APICs using special page table
entries. Instead, we just use pmap_mapdev(). We also no longer
export the virtual address of the local APIC as a global symbol to
the rest of the system, but only in local_apic.c. To aid this, the
APIC ID of each CPU is exported as a per-CPU variable.
- Interrupt sources are provided for each intpin on each IO APIC.
Currently, each source is given a unique interrupt vector meaning that
PCI interrupts are not shared on most machines with an I/O APIC.
That mapping for interrupt sources to interrupt vectors is up to the
APIC enumerator driver however.
- We no longer probe to see if we need to use mixed mode to route IRQ 0,
instead we always use mixed mode to route IRQ 0 for now. This can be
disabled via the 'NO_MIXED_MODE' kernel option.
- The npx(4) driver now always probes to see if a built-in FPU is present
since this test can now be performed with the new APIC code. However,
an SMP kernel will panic if there is more than one CPU and a built-in
FPU is not found.
- PCI interrupts are now properly routed when using APICs to route
interrupts, so remove the hack to psuedo-route interrupts when the
intpin register was read.
- The apic.h header was moved to apicreg.h and a new apicvar.h header
that declares the APIs used by the new APIC code was added.
be gone in FreeBSD 6, so put BURN_BRIDGES around it. The TRB also
felt that if something better comes along sooner, it can be used to
replace this code.
Delayed by: BSDcon and subsequent disk crash.
Quick fix for calling DELAY() for ddb input in some (atkbd-based)
console drivers. ddb must not use any normal locks, but DELAY()
normally calls getit() which needs clock_lock. One problem with using
normal locks in ddb is that deadlock is possible, but deadlock on
clock_lock is unlikely becaluse clock_lock is bogusly recursive,
apparently just to hide the problem of ddb using it. The i8254 clock
hardware has mostly write-only registers so it is important for it to
use a lock that gives exclusive access. (atkbd hardware is also
unfriendly to reentrant software but that problem is more local and
already solved.) I mostly saw the symptoms of the bug caused by
unlocking in getit() running cpu_unpend(). cpu_unpend() should not
be called while in ddb and Debugger() calls for failing assertions
about this caused a breakpoint within ddb.
ddb must also not call getit() because ddb may be being used to step
through clock initialization code that has stopped or otherwise mangled
the clock. If the clock is stopped, then getit() always returns the
same value and DELAY() takes forever if it trusts getit().
The quick fix is implement DELAY(n) as (n * timer_freq / 1000000)
inb(0x84)'s if ddb is active.
machdep.c:
Don't permit recursion on clock_lock.
A timecounter will be selected when registered if its quality is
not negative and no less than the current timecounters.
Add a sysctl to report all available timecounters and their qualities.
Give the dummy timecounter a solid negative quality of minus a million.
Give the i8254 zero and the ACPI 1000.
The TSC gets 800, unless APM or SMP forces it negative.
Other timecounters default to zero quality and thereby retain current
selection behaviour.
prevent the compiler from optimizing assignments into byte-copy
operations which might make access to the individual fields non-atomic.
Use the individual fields throughout, and don't bother locking them with
Giant: it is no longer needed.
Inspired by: tjr
statclock based on profhz when profiling is enabled MD, since most platforms
don't use this anyway. This removes the need for statclock_process, whose
only purpose was to subdivide profhz, and gets the profiling clock running
outside of sched_lock on platforms that implement suswintr.
Also changed the interface for starting and stopping the profiling clock to
do just that, instead of changing the rate of statclock, since they can now
be separate.
Reviewed by: jhb, tmm
Tested on: i386, sparc64
The correct range is [1...7] with Sunday=1, but we have been writing
[0...6] with Sunday=0.
The Soekris computers flagged the zero, zapped the date, so if you
rebooted your soekris on a sunday, it would come up with a wrong
date.
Bruce has a more extensive rework of this code, but we will stick with
the minimalist fix for now.
Spotted by: Soren Kristensen <soren@soekris.com>
Thanks to: Michael Sierchio <kudzu@tenebras.com>.
Confirmed by: bde
Approved by: re
2. Update a comment. We now restore much more than RTC updates and
interrupts.
3. Order change. Stop interrupts by writing to RTC_STATUSB,
restore rate bits for the interrupts by writing to RTC_STATUSA,
then enable interrupts again.
This seems to be done perfectly backwards in startrtclock().
Otherwise, the idea for this change was obtained from
startrtclock().
4. Don't stop the clock (RTCB_HALT). We only program some control bits
and don't want to stop the clock.
5. (Not really related.) Add caveats to the comment about timer_restore().
The update is non-atomic since locking is not done.
On locking:
6. rtcin() and writertc() are locked() adequately by splhigh() in RELENG_4,
but this locking is null in -current.
7. Doing things in the correct order in (3) combined with (6) is probably
enough locking for rtcrestore() in RELENG_4. In -current, the
writertc()'s race with rtcintr() unless the BIOS disables RTC interrupts.
Submitted by: bde (including commit message)
MFC after: 1 week
when machdep.tsc_freq returned a negative number on a 2.2GHz Xeon.
Submitted by: Brian Harrison <bharrison@ironport.com>
Reviewed by: phk
MFC after: 1 week
timecounter will be used starting at the next second, which is
good enough for sysctl purposes. If better adjustment is needed
the NTP PLL should be used.
disablement assumptions in kern_fork.c by adding another API call,
cpu_critical_fork_exit(). Cleanup the td_savecrit field by moving it
from MI to MD. Temporarily move cpu_critical*() from <arch>/include/cpufunc.h
to <arch>/<arch>/critical.c (stage-2 will clean this up).
Implement interrupt deferral for i386 that allows interrupts to remain
enabled inside critical sections. This also fixes an IPI interlock bug,
and requires uses of icu_lock to be enclosed in a true interrupt disablement.
This is the stage-1 commit. Stage-2 will occur after stage-1 has stabilized,
and will move cpu_critical*() into its own header file(s) + other things.
This commit may break non-i386 architectures in trivial ways. This should
be temporary.
Reviewed by: core
Approved by: core
enabled in critical sections and streamline critical_enter() and
critical_exit().
This commit allows an architecture to leave interrupts enabled inside
critical sections if it so wishes. Architectures that do not wish to do
this are not effected by this change.
This commit implements the feature for the I386 architecture and provides
a sysctl, debug.critical_mode, which defaults to 1 (use the feature). For
now you can turn the sysctl on and off at any time in order to test the
architectural changes or track down bugs.
This commit is just the first stage. Some areas of the code, specifically
the MACHINE_CRITICAL_ENTER #ifdef'd code, is strictly temporary and will
be cleaned up in the STAGE-2 commit when the critical_*() functions are
moved entirely into MD files.
The following changes have been made:
* critical_enter() and critical_exit() for I386 now simply increment
and decrement curthread->td_critnest. They no longer disable
hard interrupts. When critical_exit() decrements the counter to
0 it effectively calls a routine to deal with whatever interrupts
were deferred during the time the code was operating in a critical
section.
Other architectures are unaffected.
* fork_exit() has been conditionalized to remove MD assumptions for
the new code. Old code will still use the old MD assumptions
in regards to hard interrupt disablement. In STAGE-2 this will
be turned into a subroutine call into MD code rather then hardcoded
in MI code.
The new code places the burden of entering the critical section
in the trampoline code where it belongs.
* I386: interrupts are now enabled while we are in a critical section.
The interrupt vector code has been adjusted to deal with the fact.
If it detects that we are in a critical section it currently defers
the interrupt by adding the appropriate bit to an interrupt mask.
* In order to accomplish the deferral, icu_lock is required. This
is i386-specific. Thus icu_lock can only be obtained by mainline
i386 code while interrupts are hard disabled. This change has been
made.
* Because interrupts may or may not be hard disabled during a
context switch, cpu_switch() can no longer simply assume that
PSL_I will be in a consistent state. Therefore, it now saves and
restores eflags.
* FAST INTERRUPT PROVISION. Fast interrupts are currently deferred.
The intention is to eventually allow them to operate either while
we are in a critical section or, if we are able to restrict the
use of sched_lock, while we are not holding the sched_lock.
* ICU and APIC vector assembly for I386 cleaned up. The ICU code
has been cleaned up to match the APIC code in regards to format
and macro availability. Additionally, the code has been adjusted
to deal with deferred interrupts.
* Deferred interrupts use a per-cpu boolean int_pending, and
masks ipending, spending, and fpending. Being per-cpu variables
it is not currently necessary to lock; bus cycles modifying them.
Note that the same mechanism will enable preemption to be
incorporated as a true software interrupt without having to
further hack up the critical nesting code.
* Note: the old critical_enter() code in kern/kern_switch.c is
currently #ifdef to be compatible with both the old and new
methodology. In STAGE-2 it will be moved entirely to MD code.
Performance issues:
One of the purposes of this commit is to enhance critical section
performance, specifically to greatly reduce bus overhead to allow
the critical section code to be used to protect per-cpu caches.
These caches, such as Jeff's slab allocator work, can potentially
operate very quickly making the effective savings of the new
critical section code's performance very significant.
The second purpose of this commit is to allow architectures to
enable certain interrupts while in a critical section. Specifically,
the intention is to eventually allow certain FAST interrupts to
operate rather then defer.
The third purpose of this commit is to begin to clean up the
critical_enter()/critical_exit()/cpu_critical_enter()/
cpu_critical_exit() API which currently has serious cross pollution
in MI code (in fork_exit() and ast() for example).
The fourth purpose of this commit is to provide a framework that
allows kernel-preempting software interrupts to be implemented
cleanly. This is currently used for two forward interrupts in I386.
Other architectures will have the choice of using this infrastructure
or building the functionality directly into critical_enter()/
critical_exit().
Finally, this commit is designed to greatly improve the flexibility
of various architectures to manage critical section handling,
software interrupts, preemption, and other highly integrated
architecture-specific details.