288 Commits

Author SHA1 Message Date
Bill Paul
e6f328fb03 Fix a couple of u_int_foos that should have been uint_foos. 2005-02-18 04:33:34 +00:00
Bill Paul
6e121c5427 Make the Win64 -> ELF64 template a little smaller by using a string
copy op to shift arguments on the stack instead of transfering each
argument one by one through a register. Probably doesn't affect overall
operation, but makes the code a little less grotty and easier to update
later if I choose to make the wrapper handle more args. Also add
comments.
2005-02-18 03:22:37 +00:00
Bill Paul
2b0dcd6b18 Remove redundant label. 2005-02-16 21:24:04 +00:00
Bill Paul
513c5292f8 Fix freeing of custom driver extensions. (ExFreePool() was being
called with the wrong pointer.)
2005-02-16 19:21:07 +00:00
Bill Paul
2adbfd5436 KeAcquireSpinLockRaiseToDpc() and KeReleaseSpinLock() are (at least
for now) exactly the same as KfAcquireSpinLock() and KfReleaseSpinLock().
I implemented the former as small routines in subr_ntoskrnl.c that just
turned around and invoked the latter. But I don't really need the wrapper
routines: I can just create an entries in the ntoskrnl func table that
map KeAcquireSpinLockRaiseToDpc() and KeReleaseSpinLock() to
KfAcquireSpinLock() and KfReleaseSpinLock() directly. This means
the stubs can go away.
2005-02-16 18:18:30 +00:00
Bill Paul
d8f2dda739 Add support for Windows/x86-64 binaries to Project Evil.
Ville-Pertti Keinonen (will at exomi dot comohmygodnospampleasekthx)
deserves a big thanks for submitting initial patches to make it
work. I have mangled his contributions appropriately.

The main gotcha with Windows/x86-64 is that Microsoft uses a different
calling convention than everyone else. The standard ABI requires using
6 registers for argument passing, with other arguments on the stack.
Microsoft uses only 4 registers, and requires the caller to leave room
on the stack for the register arguments incase the callee needs to
spill them. Unlike x86, where Microsoft uses a mix of _cdecl, _stdcall
and _fastcall, all routines on Windows/x86-64 uses the same convention.
This unfortunately means that all the functions we export to the
driver require an intermediate translation wrapper. Similarly, we have
to wrap all calls back into the driver binary itself.

The original patches provided macros to wrap every single routine at
compile time, providing a secondary jump table with a customized
wrapper for each exported routine. I decided to use a different approach:
the call wrapper for each function is created from a template at
runtime, and the routine to jump to is patched into the wrapper as
it is created. The subr_pe module has been modified to patch in the
wrapped function instead of the original. (On x86, the wrapping
routine is a no-op.)

There are some minor API differences that had to be accounted for:

- KeAcquireSpinLock() is a real function on amd64, not a macro wrapper
  around KfAcquireSpinLock()
- NdisFreeBuffer() is actually IoFreeMdl(). I had to change the whole
  NDIS_BUFFER API a bit to accomodate this.

Bugs fixed along the way:
- IoAllocateMdl() always returned NULL
- kern_windrv.c:windrv_unload() wasn't releasing private driver object
  extensions correctly (found thanks to memguard)

This has only been tested with the driver for the Broadcom 802.11g
chipset, which was the only Windows/x86-64 driver I could find.
2005-02-16 05:41:18 +00:00
Bill Paul
b545a3b822 Next step on the road to IRPs: create and use an imitation of the
Windows DRIVER_OBJECT and DEVICE_OBJECT mechanism so that we can
simulate driver stacking.

In Windows, each loaded driver image is attached to a DRIVER_OBJECT
structure. Windows uses the registry to match up a given vendor/device
ID combination with a corresponding DRIVER_OBJECT. When a driver image
is first loaded, its DriverEntry() routine is invoked, which sets up
the AddDevice() function pointer in the DRIVER_OBJECT and creates
a dispatch table (based on IRP major codes). When a Windows bus driver
detects a new device, it creates a Physical Device Object (PDO) for
it. This is a DEVICE_OBJECT structure, with semantics analagous to
that of a device_t in FreeBSD. The Windows PNP manager will invoke
the driver's AddDevice() function and pass it pointers to the DRIVER_OBJECT
and the PDO.

The AddDevice() function then creates a new DRIVER_OBJECT structure of
its own. This is known as the Functional Device Object (FDO) and
corresponds roughly to a private softc instance. The driver uses
IoAttachDeviceToDeviceStack() to add this device object to the
driver stack for this PDO. Subsequent drivers (called filter drivers
in Windows-speak) can be loaded which add themselves to the stack.
When someone issues an IRP to a device, it travel along the stack
passing through several possible filter drivers until it reaches
the functional driver (which actually knows how to talk to the hardware)
at which point it will be completed. This is how Windows achieves
driver layering.

Project Evil now simulates most of this. if_ndis now has a modevent
handler which will use MOD_LOAD and MOD_UNLOAD events to drive the
creation and destruction of DRIVER_OBJECTs. (The load event also
does the relocation/dynalinking of the image.) We don't have a registry,
so the DRIVER_OBJECTS are stored in a linked list for now. Eventually,
the list entry will contain the vendor/device ID list extracted from
the .INF file. When ndis_probe() is called and detectes a supported
device, it will create a PDO for the device instance and attach it
to the DRIVER_OBJECT just as in Windows. ndis_attach() will then call
our NdisAddDevice() handler to create the FDO. The NDIS miniport block
is now a device extension hung off the FDO, just as it is in Windows.
The miniport characteristics table is now an extension hung off the
DRIVER_OBJECT as well (the characteristics are the same for all devices
handled by a given driver, so they don't need to be per-instance.)
We also do an IoAttachDeviceToDeviceStack() to put the FDO on the
stack for the PDO. There are a couple of fake bus drivers created
for the PCI and pccard buses. Eventually, there will be one for USB,
which will actually accept USB IRP.s

Things should still work just as before, only now we do things in
the proper order and maintain the correct framework to support passing
IRPs between drivers.

Various changes:

- corrected the comments about IRQL handling in subr_hal.c to more
  accurately reflect reality
- update ndiscvt to make the drv_data symbol in ndis_driver_data.h a
  global so that if_ndis_pci.o and/or if_ndis_pccard.o can see it.
- Obtain the softc pointer from the miniport block by referencing
  the PDO rather than a private pointer of our own (nmb_ifp is no
  longer used)
- implement IoAttachDeviceToDeviceStack(), IoDetachDevice(),
  IoGetAttachedDevice(), IoAllocateDriverObjectExtension(),
  IoGetDriverObjectExtension(), IoCreateDevice(), IoDeleteDevice(),
  IoAllocateIrp(), IoReuseIrp(), IoMakeAssociatedIrp(), IoFreeIrp(),
  IoInitializeIrp()
- fix a few mistakes in the driver_object and device_object definitions
- add a new module, kern_windrv.c, to handle the driver registration
  and relocation/dynalinkign duties (which don't really belong in
  kern_ndis.c).
- made ndis_block and ndis_chars in the ndis_softc stucture pointers
  and modified all references to it
- fixed NdisMRegisterMiniport() and NdisInitializeWrapper() so they
  work correctly with the new driver_object mechanism
- changed ndis_attach() to call NdisAddDevice() instead of ndis_load_driver()
  (which is now deprecated)
- used ExAllocatePoolWithTag()/ExFreePool() in lookaside list routines
  instead of kludged up alloc/free routines
- added kern_windrv.c to sys/modules/ndis/Makefile and files.i386.
2005-02-08 17:23:25 +00:00
Bill Paul
26805b1855 Apparently, the Intel icc compiler doesn't like it when you use
attributes in casts (i.e. foo = (__stdcall sometype)bar). This only
happens in two places where we need to set up function pointers, so
work around the problem with some void pointer magic.
2005-01-25 17:00:54 +00:00
Bill Paul
df7b7cf4c3 Begin the first phase of trying to add IRP support (and ultimately
USB device support):

- Convert all of my locally chosen function names to their actual
  Windows equivalents, where applicable. This is a big no-op change
  since it doesn't affect functionality, but it helps avoid a bit
  of confusion (it's now a lot easier to see which functions are
  emulated Windows API routines and which are just locally defined).

- Turn ndis_buffer into an mdl, like it should have been. The structure
  is the same, but now it belongs to the subr_ntoskrnl module.

- Implement a bunch of MDL handling macros from Windows and use them where
  applicable.

- Correct the implementation of IoFreeMdl().

- Properly implement IoAllocateMdl() and MmBuildMdlForNonPagedPool().

- Add the definitions for struct irp and struct driver_object.

- Add IMPORT_FUNC() and IMPORT_FUNC_MAP() macros to make formatting
  the module function tables a little cleaner. (Should also help
  with AMD64 support later on.)

- Fix if_ndis.c to use KeRaiseIrql() and KeLowerIrql() instead of
  the previous calls to hal_raise_irql() and hal_lower_irql() which
  have been renamed.

The function renaming generated a lot of churn here, but there should
be very little operational effect.
2005-01-24 18:18:12 +00:00
Bill Paul
52378c7ead Fix a problem reported by Pierre Beyssac. Sometinmes when ndis_get_info()
calls MiniportQueryInformation(), it will return NDIS_STATUS_PENDING.
When this happens, ndis_get_info() will sleep waiting for a completion
event. If two threads call ndis_get_info() and both end up having to
sleep, they will both end up waiting on the same wait channel, which
can cause a panic in sleepq_add() if INVARIANTS are turned on.

Fix this by having ndis_get_info() use a common mutex rather than
using the process mutex with PROC_LOCK(). Also do the same for
ndis_set_info(). Note that Pierre's original patch also made ndis_thsuspend()
use the new mutex, but ndis_thsuspend() shouldn't need this since
it will make each thread that calls it sleep on a unique wait channel.

Also, it occured to me that we probably don't want to enter
MiniportQueryInformation() or MiniportSetInformation() from more
than one thread at any given time, so now we acquire a Windows
spinlock before calling either of them. The Microsoft documentation
says that MiniportQueryInformation() and MiniportSetInformation()
are called at DISPATCH_LEVEL, and previously we would call
KeRaiseIrql() to set the IRQL to DISPATCH_LEVEL before entering
either routine, but this only guarantees mutual exclusion on
uniprocessor machines. To make it SMP safe, we need to use a real
spinlock. For now, I'm abusing the spinlock embedded in the
NDIS_MINIPORT_BLOCK structure for this purpose. (This may need to be
applied to some of the other routines in kern_ndis.c at a later date.)

Export ntoskrnl_init_lock() (KeInitializeSpinlock()) from subr_ntoskrnl.c
since we need to use in in kern_ndis.c, and since it's technically part
of the Windows kernel DDK API along with the other spinlock routines. Use
it in subr_ndis.c too rather than frobbing the spinlock directly.
2005-01-14 22:39:44 +00:00
Warner Losh
898b0535b7 Start each of the license/copyright comments with /*- 2005-01-05 22:34:37 +00:00
John Baldwin
63710c4d35 Stop explicitly touching td_base_pri outside of the scheduler and simply
set a thread's priority via sched_prio() when that is the desired action.
The schedulers will start managing td_base_pri internally shortly.
2004-12-30 20:29:58 +00:00
Bruce M Simpson
6120a003b4 Fix compiler warnings, when __stdcall is #defined, by adding explicit casts.
These normally only manifest if the ndis compat module is statically
compiled into a kernel image by way of 'options NDISAPI'.

Submitted by:	Dmitri Nikulin
Approved by:	wpaul
PR:		kern/71449
MFC after:	1 week
2004-09-17 19:54:26 +00:00
Bill Paul
ae58ccaa60 I'm a dumbass: remember to initialize fh->nf_map to NULL in
ndis_open_file() in the module loading case.
2004-08-16 19:25:27 +00:00
Bill Paul
161a639981 The Texas Instruments ACX111 driver wants srand(), so provide it. 2004-08-16 18:52:37 +00:00
Bill Paul
f454f98c31 Make the Texas Instruments 802.11g chipset work with the NDISulator.
This was tested with a Netgear WG311v2 802.11b/g PCI card. Things
that were fixed:

- This chip has two memory mapped regions, one at PCIR_BAR(0) and the
  other at PCIR_BAR(1). This is a little different from the other
  chips I've seen with two PCI shared memory regions, since they tend
  to have the second BAR ad PCIR_BAR(2). if_ndis_pci.c tests explicitly
  for PCIR_BAR(2). This has been changed to simply fill in ndis_res_mem
  first and ndis_res_altmem second, if a second shared memory range
  exists. Given that NDIS drivers seem to scan for BARs in ascending
  order, I think this should be ok.

- Fixed the code that tries to process firmware images that have been
  loaded as .ko files. To save a step, I was setting up the address
  mapping in ndis_open_file(), but ndis_map_file() flags pre-existing
  mappings as an error (to avoid duplicate mappings). Changed this so
  that the mapping is now donw in ndis_map_file() as expected.

- Made the typedef for 'driver_entry' explicitly include __stdcall
  to silence gcc warning in ndis_load_driver().

NOTE: the Texas Instruments ACX111 driver needs firmware. With my
card, there were 3 .bin files shipped with the driver. You must
either put these files in /compat/ndis or convert them with
ndiscvt -f and kldload them so the driver can use them. Without
the firmware image, the NIC won't work.
2004-08-16 18:50:20 +00:00
Bill Paul
6f4481422e More minor cleanups and one small bug fix:
- In ntoskrnl_var.h, I had defined compat macros for
  ntoskrnl_acquire_spinlock() and ntoskrnl_release_spinlock() but
  never used them. This is fortunate since they were stale. Fix them
  to work properly. (In Windows/x86 KeAcquireSpinLock() is a macro that
  calls KefAcquireSpinLock(), which lives in HAL.dll. To imitate this,
  ntoskrnl_acquire_spinlock() is just a macro that calls hal_lock(),
  which lives in subr_hal.o.)

- Add macros for ntoskrnl_raise_irql() and ntoskrnl_lower_irql() that
  call hal_raise_irql() and hal_lower_irql().

- Use these macros in kern_ndis.c, subr_ndis.c and subr_ntoskrnl.c.

- Along the way, I realised subr_ndis.c:ndis_lock() was not calling
  hal_lock() correctly (it was using the FASTCALL2() wrapper when
  in reality this routine is FASTCALL1()). Using the
  ntoskrnl_acquire_spinlock() fixes this. Not sure if this actually
  caused any bugs since hal_lock() would have just ignored what
  was in %edx, but it was still bogus.

This hides many of the uses of the FASTCALLx() macros which makes the
code a little cleaner. Should not have any effect on generated object
code, other than the one fix in ndis_lock().
2004-08-04 18:22:50 +00:00
Bill Paul
20b03f4992 In ndis_alloc_bufpool() and ndis_alloc_packetpool(), the test to see if
allocating pool memory succeeded was checking the wrong pointer (should
have been looking at *pool, not pool). Corrected this.
2004-08-01 21:15:29 +00:00
Bill Paul
f13b900a9e Big mess 'o changes:
- Give ndiscvt(8) the ability to process a .SYS file directly into
  a .o file so that we don't have to emit big messy char arrays into
  the ndis_driver_data.h file. This behavior is currently optional, but
  may become the default some day.

- Give ndiscvt(8) the ability to turn arbitrary files into .ko files
  so that they can be pre-loaded or kldloaded. (Both this and the
  previous change involve using objcopy(1)).

- Give NdisOpenFile() the ability to 'read' files out of kernel memory
  that have been kldloaded or pre-loaded, and disallow the use of
  the normal vn_open() file opening method during bootstrap (when no
  filesystems have been mounted yet). Some people have reported that
  kldloading if_ndis.ko works fine when the system is running multiuser
  but causes a panic when the modile is pre-loaded by /boot/loader. This
  happens with drivers that need to use NdisOpenFile() to access
  external files (i.e. firmware images). NdisOpenFile() won't work
  during kernel bootstrapping because no filesystems have been mounted.
  To get around this, you can now do the following:

        o Say you have a firmware file called firmware.img
        o Do: ndiscvt -f firmware.img -- this creates firmware.img.ko
        o Put the firmware.img.ko in /boot/kernel
        o add firmware.img_load="YES" in /boot/loader.conf
        o add if_ndis_load="YES" and ndis_load="YES" as well

  Now the loader will suck the additional file into memory as a .ko. The
  phony .ko has two symbols in it: filename_start and filename_end, which
  are generated by objcopy(1). ndis_open_file() will traverse each module
  in the module list looking for these symbols and, if it finds them, it'll
  use them to generate the file mapping address and length values that
  the caller of NdisOpenFile() wants.

  As a bonus, this will even work if the file has been statically linked
  into the kernel itself, since the "kernel" module is searched too.
  (ndiscvt(8) will generate both filename.o and filename.ko for you).

- Modify the mechanism used to provide make-pretend FASTCALL support.
  Rather than using inline assembly to yank the first two arguments
  out of %ecx and %edx, we now use the __regparm__(3) attribute (and
  the __stdcall__ attribute) and use some macro magic to re-order
  the arguments and provide dummy arguments as needed so that the
  arguments passed in registers end up in the right place. Change
  taken from DragonflyBSD version of the NDISulator.
2004-08-01 20:04:31 +00:00
Bill Paul
020732be39 *sigh* Fix source code compatibility with 5.2.1-RELEASE _again_.
(Make kdb stuff conditional.)
2004-07-20 20:28:57 +00:00
Bill Paul
7602de354f Make NdisReadPcmciaAttributeMemory() and NdisWritePcmciaAttributeMemory()
actually work.

Make the PCI and PCCARD attachments provide a bus_get_resource_list()
method so that resource listing for PCCARD works. PCCARD does not
have a bus_get_resource_list() method (yet), so I faked up the
resource list management in if_ndis_pccard.c, and added
bus_get_resource_list() methods to both if_ndis_pccard.c and if_ndis_pci.c.
The one in the PCI attechment just hands off to the PCI bus code.
The difference is transparent to the NDIS resource handler code.

Fixed ndis_open_file() so that opening files which live on NFS
filesystems work: pass an actual ucred structure to VOP_GETATTR()
(NFS explodes if the ucred structure is NOCRED).

Make NdisMMapIoSpace() handle mapping of PCMCIA attribute memory
resources correctly.

Turn subr_ndis.c:my_strcasecmp() into ndis_strcasecmp() and export
it so that if_ndis_pccard.c can use it, and junk the other copy
of my_strcasecmp() from if_ndis_pccard.c.
2004-07-11 00:19:30 +00:00
Marcel Moolenaar
bc1c6224b7 Update for the KDB framework:
o  Call kdb_enter() instead of Debugger().

While here, remove a redundant return.
2004-07-10 20:55:15 +00:00
Bill Paul
06794990cb Fix two problems:
- In subr_ndis.c:ndis_allocate_sharemem(), create the busdma tags
  used for shared memory allocations with a lowaddr of 0x3E7FFFFF.
  This forces the buffers to be mapped to physical/bus addresses within
  the first 1GB of physical memory. It seems that at least one card
  (Linksys Instant Wireless PCI V2.7) depends on this behavior. I
  don't know if this is a hardware restriction, or if the NDIS
  driver for this card is truncating the addresses itself, but using
  physical/bus addresses beyong the 1GB limit causes initialization
  failures.

- Create am NDIS_INITIALIZED() macro in if_ndisvar.h and use it in
  if_ndis.c to test whether the device has been initialized rather
  than checking for the presence of the IFF_UP flag in if_flags.
  While debugging the previous problem, I noticed that bringing
  up the device would always produce failures from ndis_setmulti().
  It turns out that the following steps now occur during device
  initialization:

	- IFF_UP flag is set in if_flags
	- ifp->if_ioctl() called with SIOCSIFADDR (which we don't handle)
	- ifp->if_ioctl() called with SIOCADDMULTI
	- ifp->if_ioctl() called with SIOCADDMULTI (again)
	- ifp->if_ioctl() called with SIOCADDMULTI (yet again)
	- ifp->if_ioctl() called with SIOCSIFFLAGS

  Setting the receive filter and multicast filters can only be done
  when the underlying NDIS driver has been initialized, which is done
  by ifp->if_init(). However, we don't call ifp->if_init() until
  ifp->if_ioctl() is called with SIOCSIFFLAGS and IFF_UP has been
  set. It appears that now, the network stack tries to add multicast
  addresses to interface's filter before those steps occur. Normally,
  ndis_setmulti() would trap this condition by checking for the IFF_UP
  flag, but the network code has in fact set this flag already, so
  ndis_setmulti() is fooled into thinking the interface has been
  initialized when it really hasn't.

  It turns out this is usually harmless because the ifp->if_init()
  routine (in this case ndis_init()) will set up the multicast
  filter when it initializes the hardware anyway, and the underlying
  routines (ndis_get_info()/ndis_set_info()) know that the driver/NIC
  haven't been initialized yet, but you end up spurious error messages
  on the console all the time.

Something tells me this new behavior isn't really correct. I think
the intention was to fix it so that ifp->if_init() is only called
once when we ifconfig an interface up, but the end result seems a
little bogus: the change of the IFF_UP flag should be propagated
down to the driver before calling any other ioctl() that might actually
require the hardware to be up and running.
2004-07-07 17:46:30 +00:00
Bill Paul
bd610e47e2 Add another 5.2.1 source compatibility tweak: acquire Giant before calling
kthread_exit() if FreeBSD_version is old enough.
2004-06-07 01:22:48 +00:00
Dag-Erling Smørgrav
63eaecc921 Take advantage of the dev sysctl tree.
Approved by:	wpaul
2004-06-04 22:24:46 +00:00
Bill Paul
38f0f45fb5 Grrr. Really check subr_ndis.c in this time. (fixed my_strcasecmp()) 2004-06-04 04:45:38 +00:00
Bill Paul
8c2dd02b27 Explicitly #include <sys/module.h> instead of depending on <sys/kernel.h>
to do it for us.
2004-06-01 23:24:17 +00:00
Bill Paul
3a7dc24c44 Fix build with ndisulator: Add prototype for my_strcasecmp(). 2004-05-29 22:34:08 +00:00
Bill Paul
d1a5f43855 In subr_ndis.c, when searching for keys in our make-pretend registry,
make the key name matching case-insensitive. There are some drivers
and .inf files that have mismatched cases, e.g. the driver will look
for "AdhocBand" whereas the .inf file specifies a registry key to be
created called "AdHocBand." The mismatch is probably a typo that went
undetected (so much for QA), but since Windows seems to be case-insensitive,
we should be too.

In if_ndis.c, initialize rates and channels correctly so that specify
frequences correctly when trying to set channels in the 5Ghz band, and
so that 802.11b rates show up for some a/b/g cards (which otherwise
appear to have no 802.11b modes).

Also, when setting OID_802_11_CONFIGURATION in ndis_80211_setstate(),
provide default values for the beacon interval, ATIM window and dwelltime.
The Atheros "Aries" driver will crash if you try to select ad-hoc mode
and leave the beacon interval set to 0: it blindly uses this value and
does a division by 0 in the interrupt handler, causing an integer
divide trap.
2004-05-29 06:41:17 +00:00
Bill Paul
a1788fb41e Small timer cleanups:
- Use the dh_inserted member of the dispatch header in the Windows
  timer structure to indicate that the timer has been "inserted into
  the timer queue" (i.e. armed via timeout()). Use this as the value
  to return to the caller in KeCancelTimer(). Previously, I was using
  callout_pending(), but you can't use that with timeout()/untimeout()
  without creating a potential race condition.

- Make ntoskrnl_init_timer() just a wrapper around ntoskrnl_init_timer_ex()
  (reduces some code duplication).

- Drop Giant when entering if_ndis.c:ndis_tick() and
  subr_ntorkrnl.c:ntoskrnl_timercall(). At the moment, I'm forced to
  use system callwheel via timeout()/untimeout() to handle timers rather
  than the callout API (struct callout is too big to fit inside the
  Windows struct KTIMER, so I'm kind of hosed). Unfortunately, all
  the callouts in the callwhere are not marked as MPSAFE, so when
  one of them fires, it implicitly acquires Giant before invoking the
  callback routine (and releases it when it returns). I don't need to
  hold Giant, but there's no way to stop the callout code from acquiring
  it as long as I'm using timeout()/untimeout(), so for now we cheat
  by just dropping Giant right away (and re-acquiring it right before
  the routine returns so keep the callout code happy). At some point,
  I will need to solve this better, but for now this should be a suitable
  workaround.
2004-04-30 20:51:55 +00:00
Bill Paul
b1084a1e96 Ok, _really_ fix the Intel 2100B Centrino deadlock problems this time.
(I hope.)

My original instinct to make ndis_return_packet() asynchronous was correct.
Making ndis_rxeof() submit packets to the stack asynchronously fixes
one recursive spinlock acquisition, but it's also possible for it to
happen via the ndis_txeof() path too. So:

- In if_ndis.c, revert ndis_rxeof() to its old behavior (and don't bother
  putting ndis_rxeof_serial() back since we don't need it anymore).

- In kern_ndis.c, make ndis_return_packet() submit the call to the
  MiniportReturnPacket() function to the "ndis swi" thread so that
  it always happens in another context no matter who calls it.
2004-04-22 07:08:39 +00:00
Bill Paul
e3a62f4d54 Correct the AT_DISPATCH_LEVEL() macro to match earlier changes. 2004-04-20 02:27:38 +00:00
Bill Paul
1906853bd2 Try to handle recursive attempts to raise IRQL to DISPATCH_LEVEL better
(among other things).
2004-04-19 22:39:04 +00:00
Bill Paul
e1c0113ffd In ntoskrnl_unlock_dpc(), use atomic_store instead of atomic_cmpset
to give up the spinlock.

Suggested by: bde
2004-04-18 18:38:59 +00:00
Bill Paul
ef617c0842 - Use memory barrier with atomic operations in ntoskrnl_lock_dpc() and
ntoskrnl_unlocl_dpc().
- hal_raise_irql(), hal_lower_irql() and hal_irql() didn't work right
  on SMP (priority inheritance makes things... interesting). For now,
  use only two states: DISPATCH_LEVEL (PI_REALTIME) and PASSIVE_LEVEL
  (everything else). Tested on a dual PIII box.
- Use ndis_thsuspend() in ndis_sleep() instead of tsleep(). (I added
  ndis_thsuspend() and ndis_thresume() to replace kthread_suspend()
  and kthread_resume(); the former will preserve a thread's priority
  when it wakes up, the latter will not.)
- Change use of tsleep() in ndis_stop_thread() to prevent priority
  change on wakeup.
2004-04-16 00:04:28 +00:00
Bill Paul
2b94c69d1d Continue my efforts to imitate Windows as closely as possible by
attempting to duplicate Windows spinlocks. Windows spinlocks differ
from FreeBSD spinlocks in the way they block preemption. FreeBSD
spinlocks use critical_enter(), which masks off _all_ interrupts.
This prevents any other threads from being scheduled, but it also
prevents ISRs from running. In Windows, preemption is achieved by
raising the processor IRQL to DISPATCH_LEVEL, which prevents other
threads from preempting you, but does _not_ prevent device ISRs
from running. (This is essentially what Solaris calls dispatcher
locks.) The Windows spinlock itself (kspin_lock) is just an integer
value which is atomically set when you acquire the lock and atomically
cleared when you release it.

FreeBSD doesn't have IRQ levels, so we have to cheat a little by
using thread priorities: normal thread priority is PASSIVE_LEVEL,
lowest interrupt thread priority is DISPATCH_LEVEL, highest thread
priority is DEVICE_LEVEL (PI_REALTIME) and critical_enter() is
HIGH_LEVEL. In practice, only PASSIVE_LEVEL and DISPATCH_LEVEL
matter to us. The immediate benefit of all this is that I no
longer have to rely on a mutex pool.

Now, I'm sure many people will be seized by the urge to criticize
me for doing an end run around our own spinlock implementation, but
it makes more sense to do it this way. Well, it does to me anyway.

Overview of the changes:

- Properly implement hal_lock(), hal_unlock(), hal_irql(),
  hal_raise_irql() and hal_lower_irql() so that they more closely
  resemble their Windows counterparts. The IRQL is determined by
  thread priority.

- Make ntoskrnl_lock_dpc() and ntoskrnl_unlock_dpc() do what they do
  in Windows, which is to atomically set/clear the lock value. These
  routines are designed to be called from DISPATCH_LEVEL, and are
  actually half of the work involved in acquiring/releasing spinlocks.

- Add FASTCALL1(), FASTCALL2() and FASTCALL3() macros/wrappers
  that allow us to call a _fastcall function in spite of the fact
  that our version of gcc doesn't support __attribute__((__fastcall__))
  yet. The macros take 1, 2 or 3 arguments, respectively. We need
  to call hal_lock(), hal_unlock() etc... ourselves, but can't really
  invoke the function directly. I could have just made the underlying
  functions native routines and put _fastcall wrappers around them for
  the benefit of Windows binaries, but that would create needless bloat.

- Remove ndis_mtxpool and all references to it. We don't need it
  anymore.

- Re-implement the NdisSpinLock routines so that they use hal_lock()
  and friends like they do in Windows.

- Use the new spinlock methods for handling lookaside lists and
  linked list updates in place of the mutex locks that were there
  before.

- Remove mutex locking from ndis_isr() and ndis_intrhand() since they're
  already called with ndis_intrmtx held in if_ndis.c.

- Put ndis_destroy_lock() code under explicit #ifdef notdef/#endif.
  It turns out there are some drivers which stupidly free the memory
  in which their spinlocks reside before calling ndis_destroy_lock()
  on them (touch-after-free bug). The ADMtek wireless driver
  is guilty of this faux pas. (Why this doesn't clobber Windows I
  have no idea.)

- Make NdisDprAcquireSpinLock() and NdisDprReleaseSpinLock() into
  real functions instead of aliasing them to NdisAcaquireSpinLock()
  and NdisReleaseSpinLock(). The Dpr routines use
  KeAcquireSpinLockAtDpcLevel() level and KeReleaseSpinLockFromDpcLevel(),
  which acquires the lock without twiddling the IRQL.

- In ndis_linksts_done(), do _not_ call ndis_80211_getstate(). Some
  drivers may call the status/status done callbacks as the result of
  setting an OID: ndis_80211_getstate() gets OIDs, which means we
  might cause the driver to recursively access some of its internal
  structures unexpectedly. The ndis_ticktask() routine will call
  ndis_80211_getstate() for us eventually anyway.

- Fix the channel setting code a little in ndis_80211_setstate(),
  and initialize the channel to IEEE80211_CHAN_ANYC. (The Microsoft
  spec says you're not supposed to twiddle the channel in BSS mode;
  I may need to enforce this later.) This fixes the problems I was
  having with the ADMtek adm8211 driver: we were setting the channel
  to a non-standard default, which would cause it to fail to associate
  in BSS mode.

- Use hal_raise_irql() to raise our IRQL to DISPATCH_LEVEL when
  calling certain miniport routines, per the Microsoft documentation.

I think that's everything. Hopefully, other than fixing the ADMtek
driver, there should be no apparent change in behavior.
2004-04-14 07:48:03 +00:00
Bill Paul
7b764c37e4 In ndis_convert_res(), initialize the head of our temporary list
before calling BUS_GET_RESOURCE_LIST(). Previously, the list head would
only be initialized if BUS_GET_RESOURCE_LIST() succeeded; it needs to
be initialized unconditionally so that the list cleanup code won't
trip over potential stack garbage.
2004-04-07 17:02:55 +00:00
Bill Paul
6a50285516 - The MiniportReset() function can return NDIS_STATUS_PENDING, in which
case we should wait for the resetdone handler to be called before
  returning.

- When providing resources via ndis_query_resources(), uses the
  computed rsclen when using bcopy() to copy out the resource data
  rather than the caller-supplied buffer length.

- Avoid using ndis_reset_nic() in if_ndis.c unless we really need
  to reset the NIC because of a problem.

- Allow interrupts to be fielded during ndis_attach(), at least
  as far as allowing ndis_isr() and ndis_intrhand() to run.

- Use ndis_80211_rates_ex when probing for supported rates. Technically,
  this isn't supposed to work since, although Microsoft added the extended
  rate structure with the NDIS 5.1 update, the spec still says that
  the OID_802_11_SUPPORTED_RATES OID uses ndis_80211_rates. In spite of
  this, it appears some drivers use it anyway.

- When adding in our guessed rates, check to see if they already exist
  so that we avoid any duplicates.

- Add a printf() to ndis_open_file() that alerts the user when a
  driver attempts to open a file under /compat/ndis.

With these changes, I can get the driver for the SMC 2802W 54g PCI
card to load and run. This board uses a Prism54G chip. Note that in
order for this driver to work, you must place the supplied smc2802w.arm
firmware image under /compat/ndis. (The firmware is not resident on
the device.)

Note that this should also allow the 3Com 3CRWE154G72 card to work
as well; as far as I can tell, these cards also use a Prism54G chip.
2004-04-05 08:26:52 +00:00
Bill Paul
6ea748c0f1 Add missing cprd_flags member to partial resource structure in
resource_var.h.

In kern_ndis.c:ndis_convert_res(), fill in the cprd_flags and
cprd_sharedisp fields as best we can.

In if_ndis.c:ndis_setmulti(), don't bother updating the multicast
filter if our multicast address list is empty.

Add some missing updates to ndis_var.h and ntoskrnl_var.h that I
forgot to check in when I added the KeDpc stuff.
2004-03-29 02:15:29 +00:00
Bill Paul
60a6006b6c Apparently, some atheros drivers want rand(), so implement it (in terms
of random()).

Requested by: juli
Bribe offered: tacos
2004-03-27 20:38:43 +00:00
Bill Paul
5d3b74e4c1 - In subr_ndis.c:ndis_init_event(), initialize events as notification
objects rather than synchronization objects. When a sync object is
  signaled, only the first thread waiting on it is woken up, and then
  it's automatically reset to the not-signaled state. When a
  notification object is signaled, all threads waiting on it will
  be woken up, and it remains in the signaled state until someone
  resets it manually. We want the latter behavior for NDIS events.

- In kern_ndis.c:ndis_convert_res(), we have to create a temporary
  copy of the list returned by BUS_GET_RESOURCE_LIST(). When the PCI
  bus code probes resources for a given device, it enters them into
  a singly linked list, head first. The result is that traversing
  this list gives you the resources in reverse order. This means when
  we create the Windows resource list, it will be in reverse order too.
  Unfortunately, this can hose drivers for devices with multiple I/O
  ranges of the same type, like, say, two memory mapped I/O regions (one
  for registers, one to map the NVRAM/bootrom/whatever). Some drivers
  test the range size to figure out which region is which, but others
  just assume that the resources will be listed in ascending order from
  lowest numbered BAR to highest. Reversing the order means such drivers
  will choose the wrong resource as their I/O register range.

  Since we can't traverse the resource SLIST backwards, we have to
  make a temporary copy of the list in the right order and then build
  the Windows resource list from that. I suppose we could just fix
  the PCI bus code to use a TAILQ instead, but then I'd have to track
  down all the consumers of the BUS_GET_RESOURCE_LIST() and fix them
  too.
2004-03-25 18:31:52 +00:00
Bill Paul
52bfac6de0 - In kern_ndis.c, implement ndis_unsched(), the complement to ndis_sched(),
which pulls a job off a thread work queue (assuming it hasn't run yet).
  This is needed for KeRemoveQueueDpc().

- In subr_ntoskrnl.c, implement KeInsertQueueDpc() and KeRemoveQueueDpc(),
  to go with KeInitializeDpc() to round out the API. Also change the
  KeTimer implementation to use this API instead of the private
  timer callout scheduler. Functionality of the timer API remains
  unchanged, but we get a couple new Windows kernel API routines and
  more closely imitate the way thing works in Windows. (As of yet
  I haven't encountered any drivers that use KeInsertQueueDpc() or
  KeRemoveQueueDpc(), but it doesn't hurt to have them.)
2004-03-25 08:23:08 +00:00
Bill Paul
150514c0eb Remove another case of grabbing Giant before doing a kthread_exit()
which is now no longer needed.
2004-03-22 22:46:22 +00:00
Bill Paul
c5d019ec55 I'm a dumbass: the test in the MOD_SHUTDOWN case in ndis_modevent()
that checks to see if any devices are still in the devlist was reversed.
2004-03-22 18:34:37 +00:00
Bill Paul
e34e2a168a The Intel 2200BG NDIS driver does an alloca() of about 5000 bytes
when it associates with a net. Because FreeBSD's kstack size is only
2 pages by default, this blows the stack and causes a double fault.

To deal with this, we now create all our kthreads with 8 stack pages.
Also, we now run all timer callouts in the ndis swi thread (since
they would otherwise run in the clock ithread, whose stack is too
small). It happens that the alloca() in this case was occuring within
the interrupt handler, which was already running in the ndis swi
thread, but I want to deal with the callouts too just to be extra
safe.

NOTE: this will only work if you update vm_machdep.c with the change
I just committed. If you don't include this fix, setting the number
of stack pages with kthread_create() has essentially no effect.
2004-03-22 00:41:41 +00:00
Bill Paul
f6159e042d - Rewrite the timer and event API routines in subr_ndis.c so that they
are actually layered on top of the KeTimer API in subr_ntoskrnl.c, just
  as it is in Windows. This reduces code duplication and more closely
  imitates the way things are done in Windows.

- Modify ndis_encode_parm() to deal with the case where we have
  a registry key expressed as a hex value ("0x1") which is being
  read via NdisReadConfiguration() as an int. Previously, we tried
  to decode things like "0x1" with strtol() using a base of 10, which
  would always yield 0. This is what was causing problems with the
  Intel 2200BG Centrino 802.11g driver: the .inf file that comes
  with it has a key called RadioEnable with a value of 0x1. We
  incorrectly decoded this value to '0' when it was queried, hence
  the driver thought we wanted the radio turned off.

- In if_ndis.c, most drivers don't accept NDIS_80211_AUTHMODE_AUTO,
  but NDIS_80211_AUTHMODE_SHARED may not be right in some cases,
  so for now always use NDIS_80211_AUTHMODE_OPEN.

NOTE: There is still one problem with the Intel 2200BG driver: it
happens that the kernel stack in Windows is larger than the kernel
stack in FreeBSD. The 2200BG driver sometimes eats up more than 2
pages of stack space, which can lead to a double fault panic.
For the moment, I got things to work by adding the following to
my kernel config file:

options         KSTACK_PAGES=8

I'm pretty sure 8 is too big; I just picked this value out of a hat
as a test, and it happened to work, so I left it. 4 pages might be
enough. Unfortunately, I don't think you can dynamically give a
thread a larger stack, so I'm not sure how to handle this short of
putting a note in the man page about it and dealing with the flood
of mail from people who never read man pages.
2004-03-20 23:39:43 +00:00
Bill Paul
f79e9df73b Add vectors for _snprintf() and _vsnprintf() (redirected straight to
snprintf() and vsnprintf() in FreeBSD kernel land).

This is needed by the Intel Centrino 2200BG driver. Unfortunately, this
driver still doesn't work right with Project Evil even with this tweak,
but I'm unable to diagnose the problem since I don't have access to a
sample card.
2004-03-15 16:39:03 +00:00
Bill Paul
0bf7b204e3 Fix mind-o: sanity check in ndis_disable_ndis() is not sane. 2004-03-11 09:50:00 +00:00
Bill Paul
1e35c8564a Fix the problem with the Cisco Aironet 340 PCMCIA card. Most newer drivers
for Windows are deserialized miniports. Such drivers maintain their own
queues and do their own locking. This particular driver is not deserialized
though, and we need special support to handle it correctly.

Typically, in the ndis_rxeof() handler, we pass all incoming packets
directly to (*ifp->if_input)(). This in turn may cause another thread
to run and preempt us, and the packet may actually be processed and
then released before we even exit the ndis_rxeof() routine. The
problem with this is that releasing a packet calls the ndis_return_packet()
function, which hands the packet and its buffers back to the driver.
Calling ndis_return_packet() before ndis_rxeof() returns will screw
up the driver's internal queues since, not being deserialized,
it does no locking.

To avoid this problem, if we detect a serialized driver (by checking
the attribute flags passed to NdisSetAttributesEx(), we use an alternate
ndis_rxeof() handler, ndis_rxeof_serial(), which puts the call to
(*ifp->if_input)() on the NDIS SWI work queue. This guarantees the
packet won't be processed until after ndis_rxeof_serial() returns.

Note that another approach is to always copy the packet data into
another mbuf and just let the driver retain ownership of the ndis_packet
structure (ndis_return_packet() never needs to be called in this
case). I'm not sure which method is faster.
2004-03-11 09:40:00 +00:00
Bill Paul
a24cc63af9 Fix several issues related to the KeInitializeTimer() etc... API stuff
that I added recently:

- When a periodic timer fires, it's automatically re-armed. We must
  make sure to re-arm the timer _before_ invoking any caller-supplied
  defered procedure call: the DPC may choose to call KeCancelTimer(),
  and re-arming the timer after the DPC un-does the effect of the
  cancel.

- Fix similar issue with periodic timers in subr_ndis.c.

- When calling KeSetTimer() or KeSetTimerEx(), if the timer is
  already pending, untimeout() it first before timeout()ing
  it again.

- The old Atheros driver for the 5211 seems to use KeSetTimerEx()
  incorrectly, or at the very least in a very strange way that
  doesn't quite follow the Microsoft documentation. In one case,
  it calls KeSetTimerEx() with a duetime of 0 and a period of 5000.
  The Microsoft documentation says that negative duetime values
  are relative to the current time and positive values are absolute.
  But it doesn't say what's supposed to happen with positive values
  that less than the current time, i.e. absolute values that are
  in the past.

  Lacking any further information, I have decided that timers with
  positive duetimes that are in the past should fire right away (or
  in our case, after only 1 tick). This also takes care of the other
  strange usage in the Atheros driver, where the duetime is
  specified as 500000 and the period is 50. I think someone may
  have meant to use -500000 and misinterpreted the documentation.

- Also modified KeWaitForSingleObject() and KeWaitForMultipleObjects()
  to make the same duetime adjustment, since they have the same rules
  regarding timeout values.

- Cosmetic: change name of 'timeout' variable in KeWaitForSingleObject()
  and KeWaitForMultipleObjects() to 'duetime' to avoid senseless
  (though harmless) overlap with timeout() function name.

With these fixes, I can get the 5211 card to associate properly with
my adhoc net using driver AR5211.SYS version 2.4.1.6.
2004-03-10 07:43:11 +00:00