the PIRQD bit.
This fixes the problem of uhub0 hanging forever during boot when USB
keyboard support is switched on in the BIOS on motherboards with Intel
chipsets (UHCI).
Approved by: The Sheep
conversion to eliminate the compatability shims without making any
significant changes. This eliminates the shim warnings.
Obtained from: n_himba (tweaked by me, don't blame him for this)
Approved by: jkh
bus_delete_resource.
Fixes a problem when the probe succeeded, but the attach failed. The
release of the resources was done inproperly.
Approved by: jkh
are using an old unconverted driver. Most (if not all) of the drivers
for common hardware are newbus these days. However, we don't want
to encourage people to take the easy way out and write new drivers
using the shims. This is just passive "encouragement".
Reviewed by: phk
the receive code so that it correctly chains receive descriptors together
and handles the case that only a part of a packet is done at the time
we get here.
This is just to make sure we initialize the chip correctly: we need to
make the sure the port select bit in CSR6 is set properly so that we
use the internal PHY for 10/100 support. (The eval boards I have also
include an external HomePNA PHY, but I need to play with that more
before I can support it.)
Collect together the components of several drivers and export eisa from
the i386-only area (It's not, it's on some alphas too). The code hasn't
been updated to work on the Alpha yet, but that can come later.
Repository copies were done a while ago.
Moving these now keeps them in consistant place across the 4.x series
as the newbusification progresses.
Submitted by: mdodd
packets into a single buffer, and set the DC_TX_COALESCE flag for the
Davicom DM9102 chip. I thought I had escaped this problem, but... This
chip appears to silently corrupt or discard transmitted frames when
using scatter/gather DMA (i.e. DMAing each packet fragment in place
with a separate descriptor). The only way to insure reliable transmission
is to coalesce transmitted packets into a single cluster buffer. (There
may also be an alignment constraint here, but mbuf cluster buffers are
naturally aligned on 2K boundaries, which seems to be good enough.)
The DM9102 driver for Linux written by Davicom also uses this workaround.
Unfortunately, the Davicom datasheet has no errata section describing
this or any other apparently known defect.
Problem noted by: allan_chou@davicom.com.tw
makes it a little easier to notice that parity checking an 8bit sram
isn't working.
Turn on scb and internal data-path parity checking for all pci chips types.
We were only doing this for ultra2 chips.
After clearing the parity interrupt status, clear the BRKADRINT. This
avoids seeing a bogus BRKADRINT interrupt after external SCB probing
once normal interrupts are enabled.
controllers will run at U2 speeds until I can complete the U160 support
for this driver.
Correct a termination buglet for the 2940UW-Pro.
Be more paranoid in how we probe and enable external ram, fast external
ram timing and external ram parity checking. We should now work on
20ns and 8bit SRAM parts.
Perform initial setup for the DT feature on cards that support it.
Factorize and clean up code. Use tables where it makes sense, etc.
Add some delays in dealing with the board control logic. I've never
seen this code fail, but with the ever increasing speed of processors,
its better to insert deterministic delays just to be safe. This stuff
is only touched during probe and attach, so the extra delay is of no
concern.