is locked when vm_page_io_finish() is called on a page. This is to satisfy
a new, post-RELENG_5 assertion in vm_page_io_finish(). (I am in the
process of transitioning the responsibility for synchronizing access to
various fields/flags on the page from the global page queues lock to the
per-object lock.)
Tripped over by: obrien@
families.
The protosw[] array of any particular protocol family ("domain") is of fixed size
defined at compile time. This made it impossible to dynamically add or remove any
protocols to or from it. We work around this by introducing so called SPACER's
which are embedded into the protosw[] array at compile time. The SPACER's have
a special protocol number (32767) to indicate the fact that they are SPACER's but
are otherwise NULL. Only as many protocols can be dynamically loaded as SPACER's
are provided in the protosw[] structure.
The pr_usrreqs structure is treated more special and contains pointers to dummy
functions only returning EOPNOTSUPP. This is needed because the use of those
functions pointers is usually not checked within the kernel because until now it
was assumed to be a valid function pointer. Instead of fixing all potential
callers we just return a proper error code.
Two new functions provide a clean API to register and unregister a protocol. The
register function expects a pointer to a valid and complete struct protosw including
a pointer to struct pru_usrreqs provided by the caller. Upon successful registration
the pr_init() function will be called to finish initialization of the protocol. The
unregister function restores the SPACER in place of the protocol again. It is the
responseability of the caller to ensure proper closing of all sockets and freeing
of memory allocation by the unloading protocol.
sys/protosw.h
o Define generic PROTO_SPACER to be 32767
o Prototypes for all pru_*_notsupp() functions
o Prototypes for pf_proto_[un]register() functions
kern/uipc_domain.c
o Global struct pr_usrreqs nousrreqs containing valid pointers to the
pru_*_notsupp() functions
o New functions pf_proto_[un]register()
kern/uipc_socket2.c
o New functions bodies for all pru_*_notsupp() functions
(sorele()/sotryfree()):
- This permits the caller to acquire the accept mutex before the socket
mutex, avoiding sofree() having to drop the socket mutex and re-order,
which could lead to races permitting more than one thread to enter
sofree() after a socket is ready to be free'd.
- This also covers clearing of the so_pcb weak socket reference from
the protocol to the socket, preventing races in clearing and
evaluation of the reference such that sofree() might be called more
than once on the same socket.
This appears to close a race I was able to easily trigger by repeatedly
opening and resetting TCP connections to a host, in which the
tcp_close() code called as a result of the RST raced with the close()
of the accepted socket in the user process resulting in simultaneous
attempts to de-allocate the same socket. The new locking increases
the overhead for operations that may potentially free the socket, so we
will want to revise the synchronization strategy here as we normalize
the reference counting model for sockets. The use of the accept mutex
in freeing of sockets that are not listen sockets is primarily
motivated by the potential need to remove the socket from the
incomplete connection queue on its parent (listen) socket, so cleaning
up the reference model here may allow us to substantially weaken the
synchronization requirements.
RELENG_5_3 candidate.
MFC after: 3 days
Reviewed by: dwhite
Discussed with: gnn, dwhite, green
Reported by: Marc UBM Bocklet <ubm at u-boot-man dot de>
Reported by: Vlad <marchenko at gmail dot com>
modes on a tty structure.
Both the ".init" and the current settings are initialized allowing
the function to be used both at attach and open time.
The function takes an argument to decide if echoing should be enabled.
Echoing should not be enabled for regular physical serial ports
unless they are consoles, in which case they should be configured
by ttyconsolemode() instead.
Use the new function throughout.
critical_exit as the process is getting scheduled to run. This is subotimal
but for now avoid the LOR between the scheduler and the sleepq systems.
This is a 5.3 candidate.
Submitted by: davidxu
MFC After: 3 days
* Get flags first, in case there is no devclass.
* Reset flags after each probe in case the next driver has no hints so it
doesn't inherit the old ones.
* Set them again before the winning probe.
Tested ok both with and without ACPI for ISA device flags.
Reviewed by: imp
MFC after: 1 day
- Add a new _lock() call to each API that locks the associated chain lock
for a lock_object pointer or wait channel. The _lookup() functions now
require that the chain lock be locked via _lock() when they are called.
- Change sleepq_add(), turnstile_wait() and turnstile_claim() to lookup
the associated queue structure internally via _lookup() rather than
accepting a pointer from the caller. For turnstiles, this means that
the actual lookup of the turnstile in the hash table is only done when
the thread actually blocks rather than being done on each loop iteration
in _mtx_lock_sleep(). For sleep queues, this means that sleepq_lookup()
is no longer used outside of the sleep queue code except to implement an
assertion in cv_destroy().
- Change sleepq_broadcast() and sleepq_signal() to require that the chain
lock is already required. For condition variables, this lets the
cv_broadcast() and cv_signal() functions lock the sleep queue chain lock
while testing the waiters count. This means that the waiters count
internal to condition variables is no longer protected by the interlock
mutex and cv_broadcast() and cv_signal() now no longer require that the
interlock be held when they are called. This lets consumers of condition
variables drop the lock before waking other threads which can result in
fewer context switches.
MFC after: 1 month
Implement preemption between threads in the same ksegp in out of slot
situations to prevent priority inversion.
Tested by: pho
Reviewed by: jhb, julian
Approved by: sam (mentor)
MFC: ASAP
sysctl routines and state. Add some code to use it for signalling the need
to downconvert a data structure to 32 bits on a 64 bit OS when requested by
a 32 bit app.
I tried to do this in a generic abi wrapper that intercepted the sysctl
oid's, or looked up the format string etc, but it was a real can of worms
that turned into a fragile mess before I even got it partially working.
With this, we can now run 'sysctl -a' on a 32 bit sysctl binary and have
it not abort. Things like netstat, ps, etc have a long way to go.
This also fixes a bug in the kern.ps_strings and kern.usrstack hacks.
These do matter very much because they are used by libc_r and other things.
remove previous entropy harvesting mutex names as they are no longer
present. Commit to this file was ommitted when randomdev_soft.c:1.5
was made.
Feet shot: Robert Huff <roberthuff at rcn dot com>
Sockets in the listen queues have reference counts of 0, so if the
protocol decides to disconnect the pcb and try to free the socket, this
triggered a race with accept() wherein accept() would bump the reference
count before sofree() had removed the socket from the listen queues,
resulting in a panic in sofree() when it discovered it was freeing a
referenced socket. This might happen if a RST came in prior to accept()
on a TCP connection.
The fix is two-fold: to expand the coverage of the accept mutex earlier
in sofree() to prevent accept() from grabbing the socket after the "is it
really safe to free" tests, and to expand the logic of the "is it really
safe to free" tests to check that the refcount is still 0 (i.e., we
didn't race).
RELENG_5 candidate.
Much discussion with and work by: green
Reported by: Marc UBM Bocklet <ubm at u-boot-man dot de>
Reported by: Vlad <marchenko at gmail dot com>
and make it visible (same way as in OpenBSD). Describe usage in manpage.
This change is useful for creating custom free methods, which
call default free method at their end.
While here, make malloc declaration for mbuf tags more informative.
Approved by: julian (mentor), sam
MFC after: 1 month
when the spin lock in question isn't -- it's the critical_enter() that
KDB set. No more panic in DDB for console -> syscons -> tty -> knote
operations.
After some discussion the best option seems to be to signal the thread's
death from within the kernel. This requires that thr_exit() take an
argument.
Discussed with: davidxu, deischen, marcel
MFC after: 3 days
Discussion: this panic (or waning) only occurs when the kernel is
compiled with INVARIANTS. Otherwise the problem (which means that
the vp->v_data field isn't NULL, and represents a coding error and
possibly a memory leak) is silently ignored by setting it to NULL
later on.
Panicking here isn't very helpful: by this time, we can only find
the symptoms. The panic occurs long after the reason for "not
cleaning" has been forgotten; in the case in point, it was the
result of severe file system corruption which left the v_type field
set to VBAD. That issue will be addressed by a separate commit.
all other threads to suicide, problem is execve() could be failed, and
a failed execve() would change threaded process to unthreaded, this side
effect is unexpected.
The new code introduces a new single threading mode SINGLE_BOUNDARY, in
the mode, all threads should suspend themself at user boundary except
the singler. we can not use SINGLE_NO_EXIT because we want to start from
a clean state if execve() is successful, suspending other threads at unknown
point and later resuming them from there and forcing them to exit at user
boundary may cause the process to start from a dirty state. If execve() is
successful, current thread upgrades to SINGLE_EXIT mode and forces other
threads to suicide at user boundary, otherwise, other threads will be resumed
and their interrupted syscall will be restarted.
Reviewed by: julian
the raw values including for child process statistics and only compute the
system and user timevals on demand.
- Fix the various kern_wait() syscall wrappers to only pass in a rusage
pointer if they are going to use the result.
- Add a kern_getrusage() function for the ABI syscalls to use so that they
don't have to play stackgap games to call getrusage().
- Fix the svr4_sys_times() syscall to just call calcru() to calculate the
times it needs rather than calling getrusage() twice with associated
stackgap, etc.
- Add a new rusage_ext structure to store raw time stats such as tick counts
for user, system, and interrupt time as well as a bintime of the total
runtime. A new p_rux field in struct proc replaces the same inline fields
from struct proc (i.e. p_[isu]ticks, p_[isu]u, and p_runtime). A new p_crux
field in struct proc contains the "raw" child time usage statistics.
ruadd() has been changed to handle adding the associated rusage_ext
structures as well as the values in rusage. Effectively, the values in
rusage_ext replace the ru_utime and ru_stime values in struct rusage. These
two fields in struct rusage are no longer used in the kernel.
- calcru() has been split into a static worker function calcru1() that
calculates appropriate timevals for user and system time as well as updating
the rux_[isu]u fields of a passed in rusage_ext structure. calcru() uses a
copy of the process' p_rux structure to compute the timevals after updating
the runtime appropriately if any of the threads in that process are
currently executing. It also now only locks sched_lock internally while
doing the rux_runtime fixup. calcru() now only requires the caller to
hold the proc lock and calcru1() only requires the proc lock internally.
calcru() also no longer allows callers to ask for an interrupt timeval
since none of them actually did.
- calcru() now correctly handles threads executing on other CPUs.
- A new calccru() function computes the child system and user timevals by
calling calcru1() on p_crux. Note that this means that any code that wants
child times must now call this function rather than reading from p_cru
directly. This function also requires the proc lock.
- This finishes the locking for rusage and friends so some of the Giant locks
in exit1() and kern_wait() are now gone.
- The locking in ttyinfo() has been tweaked so that a shared lock of the
proctree lock is used to protect the process group rather than the process
group lock. By holding this lock until the end of the function we now
ensure that the process/thread that we pick to dump info about will no
longer vanish while we are trying to output its info to the console.
Submitted by: bde (mostly)
MFC after: 1 month