---------
Make callers of namei() responsible for releasing references or locks
instead of having the underlying filesystems do it. This eliminates
redundancy in all terminal filesystems and makes it possible for stacked
transport layers such as umapfs or nullfs to operate correctly.
Quality testing was done with testvn, and lat_fs from the lmbench suite.
Some NFS client testing courtesy of Patrik Kudo.
vop_mknod and vop_symlink still release the returned vpp. vop_rename
still releases 4 vnode arguments before it returns. These remaining cases
will be corrected in the next set of patches.
---------
Submitted by: Michael Hancock <michaelh@cet.co.jp>
Reverse the VFS_VRELE patch. Reference counting of vnodes does not need
to be done per-fs. I noticed this while fixing vfs layering violations.
Doing reference counting in generic code is also the preference cited by
John Heidemann in recent discussions with him.
The implementation of alternative vnode management per-fs is still a valid
requirement for some filesystems but will be revisited sometime later,
most likely using a different framework.
Submitted by: Michael Hancock <michaelh@cet.co.jp>
deallocation cycles. This should provide a measurable improvement
on swap and memory allocation on loaded systems. It is unlikely a
complete solution. Also, provide more map info with procfs.
Chuck Cranor spurred on this improvement.
This code will be turned on with the TWO options
DEVFS and SLICE. (see LINT)
Two labels PRE_DEVFS_SLICE and POST_DEVFS_SLICE will deliniate these changes.
/dev will be automatically mounted by init (thanks phk)
on bootup. See /sys/dev/slice/slice.4 for more info.
All code should act the same without these options enabled.
Mike Smith, Poul Henning Kamp, Soeren, and a few dozen others
This code does not support the following:
bad144 handling.
Persistance. (My head is still hurting from the last time we discussed this)
ATAPI flopies are not handled by the SLICE code yet.
When this code is running, all major numbers are arbitrary and COULD
be dynamically assigned. (this is not done, for POLA only)
Minor numbers for disk slices ARE arbitray and dynamically assigned.
They are atomic, but return in essence what is in the "time" variable.
gettime() is now a macro front for getmicrotime().
Various patches to use the two new functions instead of the various
hacks used in their absence.
Some puntuation and grammer patches from Bruce.
A couple of XXX comments.
has been some bitrot and incorrect assumptions in the vfs_bio code. These
problems have manifest themselves worse on NFS type filesystems, but can
still affect local filesystems under certain circumstances. Most of
the problems have involved mmap consistancy, and as a side-effect broke
the vfs.ioopt code. This code might have been committed seperately, but
almost everything is interrelated.
1) Allow (pmap_object_init_pt) prefaulting of buffer-busy pages that
are fully valid.
2) Rather than deactivating erroneously read initial (header) pages in
kern_exec, we now free them.
3) Fix the rundown of non-VMIO buffers that are in an inconsistent
(missing vp) state.
4) Fix the disassociation of pages from buffers in brelse. The previous
code had rotted and was faulty in a couple of important circumstances.
5) Remove a gratuitious buffer wakeup in vfs_vmio_release.
6) Remove a crufty and currently unused cluster mechanism for VBLK
files in vfs_bio_awrite. When the code is functional, I'll add back
a cleaner version.
7) The page busy count wakeups assocated with the buffer cache usage were
incorrectly cleaned up in a previous commit by me. Revert to the
original, correct version, but with a cleaner implementation.
8) The cluster read code now tries to keep data associated with buffers
more aggressively (without breaking the heuristics) when it is presumed
that the read data (buffers) will be soon needed.
9) Change to filesystem lockmgr locks so that they use LK_NOPAUSE. The
delay loop waiting is not useful for filesystem locks, due to the
length of the time intervals.
10) Correct and clean-up spec_getpages.
11) Implement a fully functional nfs_getpages, nfs_putpages.
12) Fix nfs_write so that modifications are coherent with the NFS data on
the server disk (at least as well as NFS seems to allow.)
13) Properly support MS_INVALIDATE on NFS.
14) Properly pass down MS_INVALIDATE to lower levels of the VM code from
vm_map_clean.
15) Better support the notion of pages being busy but valid, so that
fewer in-transit waits occur. (use p->busy more for pageouts instead
of PG_BUSY.) Since the page is fully valid, it is still usable for
reads.
16) It is possible (in error) for cached pages to be busy. Make the
page allocation code handle that case correctly. (It should probably
be a printf or panic, but I want the system to handle coding errors
robustly. I'll probably add a printf.)
17) Correct the design and usage of vm_page_sleep. It didn't handle
consistancy problems very well, so make the design a little less
lofty. After vm_page_sleep, if it ever blocked, it is still important
to relookup the page (if the object generation count changed), and
verify it's status (always.)
18) In vm_pageout.c, vm_pageout_clean had rotted, so clean that up.
19) Push the page busy for writes and VM_PROT_READ into vm_pageout_flush.
20) Fix vm_pager_put_pages and it's descendents to support an int flag
instead of a boolean, so that we can pass down the invalidate bit.
a complement to all ops that return a vpp, VFS_VRELE. This is
initially only for file systems that implement the following ops
that do a WILLRELE:
vop_create, vop_whiteout, vop_mknod, vop_remove, vop_link,
vop_rename, vop_mkdir, vop_rmdir, vop_symlink
This is initial DNA that doesn't do anything yet. VFS_VRELE is
implemented but not called.
A default vfs_vrele was created for fs implementations that use the
standard vnode management routines.
VFS_VRELE implementations were made for the following file systems:
Standard (vfs_vrele)
ffs mfs nfs msdosfs devfs ext2fs
Custom
union umapfs
Just EOPNOTSUPP
fdesc procfs kernfs portal cd9660
These implementations may change as VOP changes are implemented.
In the next phase, in the vop implementations calls to vrele and the vrele
part of vput will be moved to the top layer vfs_vnops and made visible
to all layers. vput will be replaced by unlock in these cases. Unlocking
will still be done in the per fs layer but the refcount decrement will be
triggered at the top because it doesn't hurt to hold a vnode reference a
little longer. This will have minimal impact on the structure of the
existing code.
This will only be done for vnode arguments that are released by the various
fs vop implementations.
Wider use of VFS_VRELE will likely require restructuring of the code.
Reviewed by: phk, dyson, terry et. al.
Submitted by: Michael Hancock <michaelh@cet.co.jp>
of the various ad-hoc schemes.
2) When bringing in UPAGES, the pmap code needs to do another vm_page_lookup.
3) When appropriate, set the PG_A or PG_M bits a-priori to both avoid some
processor errata, and to minimize redundant processor updating of page
tables.
4) Modify pmap_protect so that it can only remove permissions (as it
originally supported.) The additional capability is not needed.
5) Streamline read-only to read-write page mappings.
6) For pmap_copy_page, don't enable write mapping for source page.
7) Correct and clean-up pmap_incore.
8) Cluster initial kern_exec pagin.
9) Removal of some minor lint from kern_malloc.
10) Correct some ioopt code.
11) Remove some dead code from the MI swapout routine.
12) Correct vm_object_deallocate (to remove backing_object ref.)
13) Fix dead object handling, that had problems under heavy memory load.
14) Add minor vm_page_lookup improvements.
15) Some pages are not in objects, and make sure that the vm_page.c can
properly support such pages.
16) Add some more page deficit handling.
17) Some minor code readability improvements.
1) Start using TSM.
Struct procs continue to point to upages structure, after being freed.
Struct vmspace continues to point to pte object and kva space for kstack.
u_map is now superfluous.
2) vm_map's don't need to be reference counted. They always exist either
in the kernel or in a vmspace. The vmspaces are managed by reference
counts.
3) Remove the "wired" vm_map nonsense.
4) No need to keep a cache of kernel stack kva's.
5) Get rid of strange looking ++var, and change to var++.
6) Change more data structures to use our "zone" allocator. Added
struct proc, struct vmspace and struct vnode. This saves a significant
amount of kva space and physical memory. Additionally, this enables
TSM for the zone managed memory.
7) Keep ioopt disabled for now.
8) Remove the now bogus "single use" map concept.
9) Use generation counts or id's for data structures residing in TSM, where
it allows us to avoid unneeded restart overhead during traversals, where
blocking might occur.
10) Account better for memory deficits, so the pageout daemon will be able
to make enough memory available (experimental.)
11) Fix some vnode locking problems. (From Tor, I think.)
12) Add a check in ufs_lookup, to avoid lots of unneeded calls to bcmp.
(experimental.)
13) Significantly shrink, cleanup, and make slightly faster the vm_fault.c
code. Use generation counts, get rid of unneded collpase operations,
and clean up the cluster code.
14) Make vm_zone more suitable for TSM.
This commit is partially as a result of discussions and contributions from
other people, including DG, Tor Egge, PHK, and probably others that I
have forgotten to attribute (so let me know, if I forgot.)
This is not the infamous, final cleanup of the vnode stuff, but a necessary
step. Vnode mgmt should be correct, but things might still change, and
there is still some missing stuff (like ioopt, and physical backing of
non-merged cache files, debugging of layering concepts.)
- Set UN_ULOCK in union_lock() when UN_KLOCK is set. Caller expects
that vnode is locked correctly, and may call another function which
expects locked vnode and may unlock the vnode.
- Do not assume the behavior of inside functions in FreeBSD's
vfs_suber.c is same as 4.4BSD-Lite2. Vnode may be locked in
vget() even though flag is zero. (Locked vnode is, of course,
unlocked before returning from vget.)
original BSD code. The association between the vnode and the vm_object
no longer includes reference counts. The major difference is that
vm_object's are no longer freed gratuitiously from the vnode, and so
once an object is created for the vnode, it will last as long as the
vnode does.
When a vnode object reference count is incremented, then the underlying
vnode reference count is incremented also. The two "objects" are now
more intimately related, and so the interactions are now much less
complex.
When vnodes are now normally placed onto the free queue with an object still
attached. The rundown of the object happens at vnode rundown time, and
happens with exactly the same filesystem semantics of the original VFS
code. There is absolutely no need for vnode_pager_uncache and other
travesties like that anymore.
A side-effect of these changes is that SMP locking should be much simpler,
the I/O copyin/copyout optimizations work, NFS should be more ponderable,
and further work on layered filesystems should be less frustrating, because
of the totally coherent management of the vnode objects and vnodes.
Please be careful with your system while running this code, but I would
greatly appreciate feedback as soon a reasonably possible.
of vnodes and objects. There are some metadata performance improvements
that come along with this. There are also a few prototypes added when
the need is noticed. Changes include:
1) Cleaning up vref, vget.
2) Removal of the object cache.
3) Nuke vnode_pager_uncache and friends, because they aren't needed anymore.
4) Correct some missing LK_RETRY's in vn_lock.
5) Correct the page range in the code for msync.
Be gentle, and please give me feedback asap.
flag is set in the p_pfsflags field. This, essentially, prevents an SUID
proram from hanging after being traced. (E.g., "truss /usr/bin/rlogin" would
fail, but leave rlogin in a stopevent state.) Yet another case where procctl
is (hopefully ;)) no longer needed in the general case.
Reviewed by: bde (thanks bruce :))
if one of the new poll types is requested; hopefully this will not break
any existing code. (This is done so that programs have a dependable
way of determining whether a filesystem supports the extended poll types
or not.)
The new poll types added are:
POLLWRITE - file contents may have been modified
POLLNLINK - file was linked, unlinked, or renamed
POLLATTRIB - file's attributes may have been changed
POLLEXTEND - file was extended
Note that the internal operation of poll() means that it is impossible
for two processes to reliably poll for the same event (this could
be fixed but may not be worth it), so it is not possible to rewrite
`tail -f' to use poll at this time.
1. SS_CANTRCVMORE was initially set on the wrong socket, so reads
when there has never been a writer on the socket did not return 0.
Note that such reads are only possible if the fifo was opened in
(O_RDONLY | O_NONBLOCK) mode.
2. SS_CANTSENDMORE was initially set on the wrong socket, but this
was harmless because the wrong socket is never sent from and there
is no need to set the flag initially on the right socket (since open
in (O_WRONLY | O_NONBLOCK) mode fails if there is no reader...).
3. SS_CANTRCVMORE was cleared when read() returns. This broke the
case where read() returns 0 - subsequent reads are supposed to
return 0 until a writer appears. There is no need to clear the
flag when read() returns, since it is cleared correctly when a
writer appears.
general to be of much use. Using it here weakened the _PC_MAX_CANON,
_PC_MAX_INPUT and _PC_VDISABLE cases.
fifo_pathconf() is not quite correct either. _PC_CHOWN_RESTRICTED
and _PC_LINK_MAX should be handled by the host file system. For
directories, the host file system should let us handle _PC_PIPE_BUF.
change from
ioctl(fd, PIOC<foo>, &i);
to
ioctl(fd, PIOC<foo>, i);
This is going from the _IOW to _IO ioctl macro. The kernel, procctl, and
truss must be in synch for it all to work (not doing so will get errors about
inappropriate ioctl's, fortunately). Hopefully I didn't forget anything :).
nodes; this also apparantly caused a panic in some circumstances.
Also, since procfs_exit() is getting rid of the nodes when a process
exits, don't bother checking for the process' existance in procfs_inactive().
what is teh root cause -- but, sometimes, a procfs vnode in pfshead is
apparantly corrupt (or a UFS vnode instead). Without this patch, I can
get it to panic by doing (in csh)
while (1)
ps auxwww
end
and it will panic when the PID's wrap. With it, it does not panic.
Yes -- I know that this is NOT the right way to fix it. But I haven't
been able to get it to panic yet (which confuses me). I am going to
be looking into the vgone() code now, as that may be a part of it.