31 Commits

Author SHA1 Message Date
Adrian Chadd
3e6cc97fd6 Migrate the TID TXQ accesses to a new set of macros, rather than reusing
the ATH_TXQ_* macros.

* Introduce the new macros;
* rename the TID queue and TID filtered frame queue so the compiler
  tells me I'm using the wrong macro.

These should correspond 1:1 to the existing code.
2012-10-07 23:45:19 +00:00
Adrian Chadd
76af1a93c9 Correctly mask out the RTS/CTS flags when forming aggregates.
This had the side effect of clearing HAL_TXDESC_CLRDMASK for a bunch of
frames, meaning they'd end up being potentially filtered if there were
an error.  This is fine in the previous world as they'd just be
software retried but now that I'm working on filtered frames, these
descriptors would be endlessly retried until another valid frame would
come along that had CLRDMASK set.
2012-09-08 02:56:09 +00:00
Adrian Chadd
8c08c07ac4 Shuffle the call to ath_hal_setuplasttxdesc() to _after_ the rate control
code is called and remove it from ath_buf_set_rate().

For the legacy (non-11n API) TX routines, ath_hal_filltxdesc() takes care
of setting up the intermediary and final descriptors right, complete
with copying the rate control info into the final descriptor so the
rate modules can grab it.

The 11n version doesn't do this - ath_hal_chaintxdesc() doesn't
copy the rate control bits over, nor does it clear isaggr/moreaggr/
pad delimiters.  So the call to setuplasttxdesc() is needed here.

So:

* legacy NICs - never call the 11n rate control stuff, so filltxdesc
  copies the rate control info right;
* 11n NICs transmitting legacy or 11n non-aggregate frames -
  ath_hal_set11nratescenario() is called to setup rate control and
  then ath_hal_filltxdesc() chains them together - so the rate control
  info is right;
* 11n aggregate frames - set11nratescenario() is called, then
  ath_hal_chaintxdesc() is called to chain a list of aggregate and subframes
  together. This requires a call to ath_hal_setuplasttxdesc() to complete
  things.

Tested:

* AR9280 in station mode

TODO:

* I really should make sure that the descriptor contents get blanked
  out correctly or garbage left over from aggregate frames may show
  up in non-aggregate frames, leading to badness.
2012-07-31 17:08:29 +00:00
Adrian Chadd
3e647f1cb4 Introduce a couple more fields in the rate scenario setup as part of
(future) TPC support in the AR9300 HAL.

This is effectively a no-op for the moment as (a) TPC isn't really
supported, (b) the AR9300 HAL isn't yet public, and (c) the existing
HAL code doesn't use these fields.

Obtained from:	Qualcomm Atheros
2012-07-27 11:43:10 +00:00
Adrian Chadd
59ab77207e Revert this; it wasn't supposed to be part of this commit. 2012-07-23 03:55:19 +00:00
Adrian Chadd
3fdfc33024 Begin separating out the TX DMA setup in preparation for TX EDMA support.
* Introduce TX DMA setup/teardown methods, mirroring what's done in
  the RX path.

  Although the TX DMA descriptor is setup via ath_desc_alloc() /
  ath_desc_free(), there TX status descriptor ring will be allocated
  in this path.

* Remove some of the TX EDMA capability probing from the RX path and
  push it into the new TX EDMA path.
2012-07-23 03:52:18 +00:00
Adrian Chadd
b25c1f2af0 A few nitpicks:
* Use ATH_RC_NUM instead of '4' when iterating over the ratecontrol series
  array.

* A few style(9) fixes, hopefully no regressions here.

* Add some comments that better describe what's going on.
2012-06-16 21:37:15 +00:00
Adrian Chadd
46f5390139 Remove a duplicate definition. 2012-06-13 05:47:24 +00:00
Adrian Chadd
a108d2d6c6 Revert r233227 and followup commits as it breaks CCMP PN replay detection.
This showed up when doing heavy UDP throughput on SMP machines.

The problem with this is because the 802.11 sequence number is being
allocated separately to the CCMP PN replay number (which is assigned
during ieee80211_crypto_encap()).

Under significant throughput (200+ MBps) the TX path would be stressed
enough that frame TX/retry would force sequence number and PN allocation
to be out of order.  So once the frames were reordered via 802.11 seqnos,
the CCMP PN would be far out of order, causing most frames to be discarded
by the receiver.

I've fixed this in some local work by being forced to:

  (a) deal with the issues that lead to the parallel TX causing out of
      order sequence numbers in the first place;
  (b) fix all the packet queuing issues which lead to strange (but mostly
      valid) TX.

I'll begin fixing these in a subsequent commit or five.

PR:		kern/166190
2012-06-11 06:59:28 +00:00
Adrian Chadd
781e7eaffd As I thought, this is a bad idea. When forming aggregates, the RTS/CTS
stuff and rate control lookup is only done on the first frame.
2012-04-07 05:46:00 +00:00
Adrian Chadd
045bc7882e Enforce the RTS aggregation limit if RTS/CTS protection is enabled;
if any subframes in an aggregate have different protection from the
first frame in the formed aggregate, don't add that frame to the
aggregate.

This is likely a suboptimal method (I think we'll mostly be OK marking
frames that have seqno's with the same protection as normal data frames)
but I'll just be cautious for now.
2012-04-07 03:22:11 +00:00
Adrian Chadd
875a9451d9 Remove duplicate txflags field from ath_buf.
rename bf_state.bfs_flags to bf_state.bfs_txflags, as that is what
it effectively is.
2012-04-07 02:01:26 +00:00
Adrian Chadd
091e146cf6 Use the assigned sequence number when checking if a retried packet is
within the BAW.

This regression was introduced in ane earlier commit by me to fix the
BAW seqno allocation-but-not-insertion-into-BAW race.  Since it was only
ever using the to-be allocated sequence number, any frame retries
with the first frame in the BAW still in the software queue would
have constantly failed, as ni_txseqs[tid] would always be outside
the BAW.

TODO:

* Extract out the mostly common code here in the agg and non-agg ADDBA
  case and stuff it into a single function.

PR:		kern/166357
2012-03-26 16:05:19 +00:00
Adrian Chadd
0b96ef630b Delay sequence number allocation for A-MPDU until just before the frame
is queued to the hardware.

Because multiple concurrent paths can execute ath_start(), multiple
concurrent paths can push frames into the software/hardware TX queue
and since preemption/interrupting can occur, there's the possibility
that a gap in time will occur between allocating the sequence number
and queuing it to the hardware.

Because of this, it's possible that a thread will have allocated a
sequence number and then be preempted by another thread doing the same.
If the second thread sneaks the frame into the BAW, the (earlier) sequence
number of the first frame will be now outside the BAW and will result
in the frame being constantly re-added to the tail of the queue.
There it will live until the sequence numbers cycle around again.

This also creates a hole in the RX BAW tracking which can also cause
issues.

This patch delays the sequence number allocation to occur only just before
the frame is going to be added to the BAW.  I've been wanting to do this
anyway as part of a general code tidyup but I've not gotten around to it.
This fixes the PR.

However, it still makes it quite difficult to try and ensure in-order
queuing and dequeuing of frames. Since multiple copies of ath_start()
can be run at the same time (eg one TXing process thread, one TX completion
task/one RX task) the driver may end up having frames dequeued and pushed
into the hardware slightly/occasionally out of order.

And, to make matters more annoying, net80211 may have the same behaviour -
in the non-aggregation case, the TX code allocates sequence numbers
before it's thrown to the driver.  I'll open another PR to investigate
this and potentially introduce some kind of final-pass TX serialisation
before frames are thrown to the hardware.  It's also very likely worthwhile
adding some debugging code into ath(4) and net80211 to catch when/if this
does occur.

PR:		kern/166190
2012-03-20 04:50:25 +00:00
Adrian Chadd
eb6f0de09d Introduce TX aggregation and software TX queue management
for Atheros AR5416 and later wireless devices.

This is a very large commit - the complete history can be
found in the user/adrian/if_ath_tx branch.

Legacy (ie, pre-AR5416) devices also use the per-software
TXQ support and (in theory) can support non-aggregation
ADDBA sessions. However, the net80211 stack doesn't currently
support this.

In summary:

TX path:

* queued frames normally go onto a per-TID, per-node queue
* some special frames (eg ADDBA control frames) are thrown
  directly onto the relevant hardware queue so they can
  go out before any software queued frames are queued.
* Add methods to create, suspend, resume and tear down an
  aggregation session.
* Add in software retransmission of both normal and aggregate
  frames.
* Add in completion handling of aggregate frames, including
  parsing the block ack bitmap provided by the hardware.
* Write an aggregation function which can assemble frames into
  an aggregate based on the selected rate control and channel
  configuration.
* The per-TID queues are locked based on their target hardware
  TX queue. This matches what ath9k/atheros does, and thus
  simplified porting over some of the aggregation logic.
* When doing TX aggregation, stick the sequence number allocation
  in the TX path rather than net80211 TX path, and protect it
  by the TXQ lock.

Rate control:

* Delay rate control selection until the frame is about to
  be queued to the hardware, so retried frames can have their
  rate control choices changed. Frames with a static rate
  control selection have that applied before each TX, just
  to simplify the TX path (ie, not have "static" and "dynamic"
  rate control special cased.)
* Teach ath_rate_sample about aggregates - both completion and
  errors.
* Add an EWMA for tracking what the current "good" MCS rate is
  based on failure rates.

Misc:

* Introduce a bunch of dirty hacks and workarounds so TID mapping
  and net80211 frame inspection can be kept out of the net80211
  layer. Because of the way this code works (and it's from Atheros
  and Linux ath9k), there is a consistent, 1:1 mapping between
  TID and AC. So we need to ensure that frames going to a specific
  TID will _always_ end up on the right AC, and vice versa, or the
  completion/locking will simply get very confused. I plan on
  addressing this mess in the future.

Known issues:

* There is no BAR frame transmission just yet. A whole lot of
  tidying up needs to occur before BAR frame TX can occur in the
  "correct" place - ie, once the TID TX queue has been drained.

* Interface reset/purge/etc results in frames in the TX and RX
  queues being removed. This creates holes in the sequence numbers
  being assigned and the TX/RX AMPDU code (on either side) just
  hangs.

* There's no filtered frame support at the present moment, so
  stations going into power saving mode will simply have a number
  of frames dropped - likely resulting in a traffic "hang".

* Raw frame TX is going to just not function with 11n aggregation.
  Likely this needs to be modified to always override the sequence
  number if the frame is going into an aggregation session.
  However, general raw frame injection currently doesn't work in
  general in net80211, so let's just ignore this for now until
  this is sorted out.

* HT protection is just not implemented and won't be until the above
  is sorted out. In addition, the AR5416 has issues RTS protecting
  large aggregates (anything >8k), so the work around needs to be
  ported and tested. Thus, this will be put on hold until the above
  work is complete.

* The rate control module 'sample' is the only currently supported
  module; onoe/amrr haven't been tested and have likely bit rotted
  a little. I'll follow up with some commits to make them work again
  for non-11n rates, but they won't be updated to handle 11n and
  aggregation. If someone wishes to do so then they're welcome to
  send along patches.

* .. and "sample" doesn't really do a good job of 11n TX. Specifically,
  the metrics used (packet TX time and failure/success rates) isn't as
  useful for 11n. It's likely that it should be extended to take into
  account the aggregate throughput possible and then choose a rate
  which maximises that. Ie, it may be acceptable for a higher MCS rate
  with a higher failure to be used if it gives a more acceptable
  throughput/latency then a lower MCS rate @ a lower error rate.
  Again, patches will be gratefully accepted.

Because of this, ATH_ENABLE_11N is still not enabled by default.

Sponsored by:	Hobnob, Inc.
Obtained from:	Linux, Atheros
2011-11-08 22:43:13 +00:00
Adrian Chadd
6246be6e58 Enable setting the short-GI bit when TX'ing HT rates but only if the
hardware supports it.

Since ni->ni_htcap in hostap mode is what the remote end has advertised,
not what has been negotiated/decided, we need to check ourselves what
the current channel width is and what the hardware supports before
enabling short-GI.

It's important that short-GI isn't enabled when it isn't negotiated
and when the hardware doesn't support it (ie, short-gi for 20mhz channels
on any chip < AR9287.)

I've quickly verified this on the AR9285 in 11n mode.
2011-05-30 15:06:57 +00:00
Adrian Chadd
532f24429c After discussing with Bernhard, the "right" way in net80211 to check
the channel width is ni->ni_chw, which is set to the negotiated channel
width. ni->ni_htflags is the capability, rather than the negotiated
value.

Teach both the TX path and the sample rate module about this.
2011-03-25 10:55:25 +00:00
Adrian Chadd
ab2e5836be Re-disable the setting of 2040/shortgi bits for now.
This seems to work fine for STA but not HT/20 AP mode.

Further discussion with net80211 people will need to take place
to ensure that the right flags are set based on the negotiated
capabilities of the remote peer, rather than whatever the local
parameters are.

Sending short-gi frames in 20mhz may work on some chips but
it certainly isn't supported on anything currently supported
by the HAL; and sending HT40 frames in HT20 mode just plain
won't work.
2011-03-25 04:15:30 +00:00
Adrian Chadd
7b83029b7b Flip back HT/40 and Short-GI (for 40mhz operation). These are now verified to work. 2011-03-24 16:06:54 +00:00
Adrian Chadd
1198947acd Clean up setting the short preamble bit in the rate - this way it
is very obvious (and cleanly so) that it occurs for non-11n rates.
2011-03-22 13:39:00 +00:00
Adrian Chadd
fce6d67665 The number of streams is not based on the interface stream count, but the
number of streams needed for that MCS rate.
2011-03-13 08:23:59 +00:00
Adrian Chadd
4c95757404 Disable trying to do HT/40 and short-GI TX.
These flags are just plain wrong - they're the node flags from negotiation,
not the configured flags. I'll jump in later on and figure out exactly
what should be done to properly set these two flags when in both STA mode
(ie, what the AP says is possible and what's configured) and AP mode
(ie, where the AP has a configuration, but then negotiates what's possible
with each node, so per-node configuration can and will differ.)

This allows the 11n 2.4ghz/ht20 mode to associate (but perform poorly still)
and exchange MCS rates with atheros reference APs and a Cisco/Linksys
E3000 AP.
2011-03-03 03:02:06 +00:00
Adrian Chadd
2b5684a813 Don't set the RTS/CTS enable bit per-scenario if the global RTS/CTS
flags aren't set.
2011-02-22 04:41:04 +00:00
Adrian Chadd
146b49d8cb * Don't setup the scenario if the try count is 0
* Comment what else is going on during rate scenario setup
2011-02-22 00:01:19 +00:00
Adrian Chadd
9a97e25edf Implement setting the short preamble bit if it's needed for the current node.
Short preamble rates are only for legacy rates; MCS rate codes don't have a short
preamble code like this.
2011-02-21 03:52:51 +00:00
Adrian Chadd
7842451a3a Just be double-sure short-gi isn't being enabled in 20mhz mode. 2011-02-17 17:35:09 +00:00
Adrian Chadd
1325ba9d01 This should be TX stream, not RX stream. 2011-02-13 15:14:13 +00:00
Adrian Chadd
bf26df3693 The current code used the fields in ath_set11nratescenario() . Use them
correctly:

* pass in whether to allow the hardware to override the duration field
  in the main data frame (durupdate_en) - PS_POLL frames in particular
  don't have the duration bit overriden;
* there's no rts/cts duration here; that's done elsehwere
2011-02-12 02:14:19 +00:00
Adrian Chadd
f449ab1c29 .. how'd this compile before I commit it and then not now?
Fixed.
2011-02-11 14:07:27 +00:00
Adrian Chadd
6c9b00e11f The last parameter to ath_computedur_ht() is short-GI, not short-preamble. 2011-02-11 13:05:15 +00:00
Adrian Chadd
4b44f6f275 Include some preliminary TX HT rate scenario setup code.
The AR5416 and later TX descriptors have new fields for supporting
11n bits (eg 20/40mhz mode, short/long GI) and enabling/disabling
RTS/CTS protection per rate.

These functions will be responsible for initialising the TX descriptors
for the AR5416 and later chips for both HT and legacy frames.

Beacon frames will remain using the non-11n TX descriptor setup for now;
Linux ath9k does much the same.

Note that these functions aren't yet used anywhere; a few more framework
changes are needed before all of the right rate information is available
for TX.
2011-02-01 08:03:01 +00:00