silent NULL pointer dereference in the i386 and sparc64 pmap_pinit()
when the kmem_alloc_nofault() failed to allocate address space. Both
functions now return error instead of panicing or dereferencing NULL.
As consequence, vmspace_exec() and vmspace_unshare() returns the errno
int. struct vmspace arg was added to vm_forkproc() to avoid dealing
with failed allocation when most of the fork1() job is already done.
The kernel stack for the thread is now set up in the thread_alloc(),
that itself may return NULL. Also, allocation of the first process
thread is performed in the fork1() to properly deal with stack
allocation failure. proc_linkup() is separated into proc_linkup()
called from fork1(), and proc_linkup0(), that is used to set up the
kernel process (was known as swapper).
In collaboration with: Peter Holm
Reviewed by: jhb
This change introduces audit_proc_coredump() which is called by coredump(9)
to create an audit record for the coredump event. When a process
dumps a core, it could be security relevant. It could be an indicator that
a stack within the process has been overflowed with an incorrectly constructed
malicious payload or a number of other events.
The record that is generated looks like this:
header,111,10,process dumped core,0,Thu Oct 25 19:36:29 2007, + 179 msec
argument,0,0xb,signal
path,/usr/home/csjp/test.core
subject,csjp,csjp,staff,csjp,staff,1101,1095,50457,10.37.129.2
return,success,1
trailer,111
- We allocate a completely new record to make sure we arent clobbering
the audit data associated with the syscall that produced the core
(assuming the core is being generated in response to SIGABRT and not
an invalid memory access).
- Shuffle around expand_name() so we can use the coredump name at the very
beginning of the coredump call. Make sure we free the storage referenced
by "name" if we need to bail out early.
- Audit both successful and failed coredump creation efforts
Obtained from: TrustedBSD Project
Reviewed by: rwatson
MFC after: 1 month
audit it at the beginning of the syscall. This fixes a problem
where the user supplies an invalid process ID which is > 0 which
results in the PID argument not being audited.
Obtained from: TrustedBSD Project
MFC after: 1 week
- Use thread_lock() rather than sched_lock for per-thread scheduling
sychronization.
- Use the per-process spinlock rather than the sched_lock for per-process
scheduling synchronization.
- Move some common code into thread_suspend_switch() to handle the
mechanics of suspending a thread. The locking here is incredibly
convoluted and should be simplified.
Tested by: kris, current@
Tested on: i386, amd64, ULE, 4BSD, libthr, libkse, PREEMPTION, etc.
Discussed with: kris, attilio, kmacy, jhb, julian, bde (small parts each)
td_ru. This removes the requirement for per-process synchronization in
statclock() and mi_switch(). This was previously supported by
sched_lock which is going away. All modifications to rusage are now
done in the context of the owning thread. reads proceed without locks.
- Aggregate exiting threads rusage in thread_exit() such that the exiting
thread's rusage is not lost.
- Provide a new routine, rufetch() to fetch an aggregate of all rusage
structures from all threads in a process. This routine must be used
in any place requiring a rusage from a process prior to it's exit. The
exited process's rusage is still available via p_ru.
- Aggregate tick statistics only on demand via rufetch() or when a thread
exits. Tick statistics are kept in the thread and protected by sched_lock
until it exits.
Initial patch by: attilio
Reviewed by: attilio, bde (some objections), arch (mostly silent)
Change the VOP_OPEN(), vn_open() vnode operation and d_fdopen() cdev operation
argument from being file descriptor index into the pointer to struct file.
Proposed and reviewed by: jhb
Reviewed by: daichi (unionfs)
Approved by: re (kensmith)
- Remove also "MP SAFE" after prior "MPSAFE" pass. (suggested by bde)
- Remove extra blank lines in some cases.
- Add extra blank lines in some cases.
- Remove no-op comments consisting solely of the function name, the word
"syscall", or the system call name.
- Add punctuation.
- Re-wrap some comments.
system calls now enter without Giant held, and then in some cases, acquire
Giant explicitly.
Remove a number of other MPSAFE annotations in the credential code and
tweak one or two other adjacent comments.
processes. It was originally added back when support for Linux threads
(and thus shared sigacts objects) was added, but no one knows why. My
guess is that at some point during the Linux threads patches, the sigacts
object was torn down during exit1(), so this check was added to prevent
a panic for that race. However, the stuff that was actually committed to
the tree doesn't teardown sigacts until wait() making the above race moot.
Re-allowing signals here lets one interrupt a NFS request during process
teardown (such as closing descriptors) on an interruptible mount.
Requested by: kib (long time ago)
MFC after: 1 week
generating a coredump as the result of a signal.
- Fix a bug where we could leak a Giant lock if vn_start_write() failed
in coredump().
Reported by: jmg (2)
suspension code. When a thread A is going to sleep, it calls
sleepq_catch_signals() to detect any pending signals or thread
suspension request, if nothing happens, it returns without
holding process lock or scheduler lock, this opens a race
window which allows thread B to come in and do process
suspension work, however since A is still at running state,
thread B can do nothing to A, thread A continues, and puts
itself into actually sleeping state, but B has never seen it,
and it sits there forever until B is woken up by other threads
sometimes later(this can be very long delay or never
happen). Fix this bug by forcing sleepq_catch_signals to
return with scheduler lock held.
Fix sleepq_abort() by passing it an interrupted code, previously,
it worked as wakeup_one(), and the interruption can not be
identified correctly by sleep queue code when the sleeping
thread is resumed.
Let thread_suspend_check() returns EINTR or ERESTART, so sleep
queue no longer has to use SIGSTOP as a hack to build a return
value.
Reviewed by: jhb
MFC after: 1 week
remote CPU. While here, abstract thread suspension code into a function
called sig_suspend_threads, the function is called when a process received
a STOP signal.
by debugger, e.g process is dumping core. Only access p_xthread if
P_STOPPED_TRACE is set, this means thread is ready to exchange signal
with debugger, print a warning if P_STOPPED_TRACE is not set due to
some bugs in other code, if there is.
The patch has been tested by Anish Mistry mistry.7 at osu dot edu, and
is slightly adjusted.
being hold by current thread or ignored by current process,
otherwise, it is very possible the thread will enter an infinite loop
and lead to an administrator's nightmare.
For each child process whose status has been changed, a SIGCHLD instance
is queued, if the signal is stilling pending, and process changed status
several times, signal information is updated to reflect latest process
status. If wait() returns because the status of a child process is
available, pending SIGCHLD signal associated with the child process is
discarded. Any other pending SIGCHLD signals remain pending.
The signal information is allocated at the same time when proc structure
is allocated, if process signal queue is fully filled or there is a memory
shortage, it can still send the signal to process.
There is a booting time tunable kern.sigqueue.queue_sigchild which
can control the behavior, setting it to zero disables the SIGCHLD queueing
feature, the tunable will be removed if the function is proved that it is
stable enough.
Tested on: i386 (SMP and UP)
both proc pointer and thread pointer, if thread pointer is NULL,
tdsignal automatically finds a thread, otherwise it sends signal
to given thread.
Add utility function psignal_event to send a realtime sigevent
to a process according to the delivery requirement specified in
struct sigevent.
convert to or from timeval frequently.
Introduce function itimer_accept() to ack a timer signal in signal
acceptance code, this allows us to return more fresh overrun counter
than at signal generating time. while POSIX says:
"the value returned by timer_getoverrun() shall apply to the most
recent expiration signal delivery or acceptance for the timer,.."
I prefer returning it at acceptance time.
Introduce SIGEV_THREAD_ID notification mode, it is used by thread
libary to request kernel to deliver signal to a specified thread,
and in turn, the thread library may use the mechanism to implement
SIGEV_THREAD which is required by POSIX.
Timer signal is managed by timer code, so it can not fail even if
signal queue is full filled by sigqueue syscall.
2. Introduce flags KSI_EXT and KSI_INS. The flag KSI_EXT allows a ksiginfo
to be managed by outside code, the KSI_INS indicates sigqueue_add should
directly insert passed ksiginfo into queue other than copy it.
changes in MD code are trivial, before this change, trapsignal and
sendsig use discrete parameters, now they uses member fields of
ksiginfo_t structure. For sendsig, this change allows us to pass
POSIX realtime signal value to user code.
2. Remove cpu_thread_siginfo, it is no longer needed because we now always
generate ksiginfo_t data and feed it to libpthread.
3. Add p_sigqueue to proc structure to hold shared signals which were
blocked by all threads in the proc.
4. Add td_sigqueue to thread structure to hold all signals delivered to
thread.
5. i386 and amd64 now return POSIX standard si_code, other arches will
be fixed.
6. In this sigqueue implementation, pending signal set is kept as before,
an extra siginfo list holds additional siginfo_t data for signals.
kernel code uses psignal() still behavior as before, it won't be failed
even under memory pressure, only exception is when deleting a signal,
we should call sigqueue_delete to remove signal from sigqueue but
not SIGDELSET. Current there is no kernel code will deliver a signal
with additional data, so kernel should be as stable as before,
a ksiginfo can carry more information, for example, allow signal to
be delivered but throw away siginfo data if memory is not enough.
SIGKILL and SIGSTOP have fast path in sigqueue_add, because they can
not be caught or masked.
The sigqueue() syscall allows user code to queue a signal to target
process, if resource is unavailable, EAGAIN will be returned as
specification said.
Just before thread exits, signal queue memory will be freed by
sigqueue_flush.
Current, all signals are allowed to be queued, not only realtime signals.
Earlier patch reviewed by: jhb, deischen
Tested on: i386, amd64
Fix a race condition between kern_wait() and thread_stopped().
Problem is in kern_wait(), parent process steps through children list,
once a child process is skipped, and later even if the child is stopped,
parent process still sleeps in msleep(), the race happens if parent
masked SIGCHLD.
Submitted by : Peter Edwards peadar.edwards at gmail dot com
MFC after : 4 days
The main reason for doing this is that the ELF dump handler expects
the thread list to be fixed while the dump header is generated, so an
upcall that occurs at the wrong time can lead to buffer overruns and
other Bad Things.
Another solution would be to grab sched_lock in the ELF dump handler,
but we might as well single-thread, since the process is about to die.
Furthermore, I think this should ensure that the register sets in the
core file are sequentially consistent.