Kawasaki LSI KL5KUSB101B chip, including the LinkSys USB10T, the
Entrega NET-USB-E45, the Peracom USB Ethernet Adapter, the 3Com
3c19250 and the ADS Technologies USB-10BT. This device is 10mbs
half-duplex only, so there's miibus or ifmedia support. This device
also requires firmware to be loaded into it, however KLSI allows
redistribution of the firmware images (I specifically asked about
this; they said it was ok).
Special thanks to Annelise Anderson for getting me in touch with
KLSI (eventually) and thanks to KLSI for providing the necessary
programming info.
Highlights:
- Add driver files to /sys/dev/usb
- update usbdevs and regenerate attendate files
- update usb_quirks.c
- Update HARDWARE.TXT and RELNOTES.TXT for i386 and alpha
- Update LINT, GENERIC and others for i386, alpha and pc98
- Add man page
- Add module
- Update sysinstall and userconfig.c
is an application space macro and the applications are supposed to be free
to use it as they please (but cannot). This is consistant with the other
BSD's who made this change quite some time ago. More commits to come.
USB ethernet chip. Adapters that use this chip include the LinkSys
USB100TX. There are a few others, but I'm not certain of their
availability in the U.S. I used an ADMtek eval board for development.
Note that while the ADMtek chip is a 100Mbps device, you can't really
get 100Mbps speeds over USB. Regardless, this driver uses miibus to
allow speed and duplex mode selection as well as autonegotiation.
Building and kldloading the driver as a module is also supported.
Note that in order to make this driver work, I had to make what some
may consider an ugly hack to sys/dev/usb/usbdi.c. The usbd_transfer()
function will use tsleep() for synchronous transfers that don't complete
right away. This is a problem since there are times when we need to
do sync transfers from an interrupt context (i.e. when reading registers
from the MAC via the control endpoint), where tsleep() us a no-no.
My hack allows the driver to have the code poll for transfer completion
subject to the xfer->timeout timeout rather that calling tsleep().
This hack is controlled by a quirk entry and is only enabled for the
ADMtek device.
Now, I'm sure there are a few of you out there ready to jump on me
and suggest some other approach that doesn't involve a busy wait. The
only solution that might work is to handle the interrupts in a kernel
thread, where you may have something resembling a process context that
makes it okay to tsleep(). This is lovely, except we don't have any
mechanism like that now, and I'm not about to implement such a thing
myself since it's beyond the scope of driver development. (Translation:
I'll be damned if I know how to do it.) If FreeBSD ever aquires such
a mechanism, I'll be glad to revisit the driver to take advantage of
it. In the meantime, I settled for what I perceived to be the solution
that involved the least amount of code changes. In general, the hit
is pretty light.
Also note that my only USB test box has a UHCI controller: I haven't
I don't have a machine with an OHCI controller available.
Highlights:
- Updated usb_quirks.* to add UQ_NO_TSLEEP quirk for ADMtek part.
- Updated usbdevs and regenerated generated files
- Updated HARDWARE.TXT and RELNOTES.TXT files
- Updated sysinstall/device.c and userconfig.c
- Updated kernel configs -- device aue0 is commented out by default
- Updated /sys/conf/files
- Added new kld module directory
Fixed some style bugs (always use precisely 1 space after `:' in
dependency specifications).
Removed bogus dependency of ${FULLKERNEL} on ${BEFORE_DEPEND}.
pr_input() routines prototype is also changed to support IPSEC and IPV6
chained protocol headers.
Reviewed by: freebsd-arch, cvs-committers
Obtained from: KAME project
now. On one machine with <825a> and <875> controllers, `sym' correctly
attached. On another one with only a <ncr 53c810 fast10 scsi>, the `ncr'
driver correctly attached.
3.3R and then to -current. The pccard support has been left in the
driver, but is presently non-functional because we are using the
isa_compat layer for the moment.
Obtained From: PAO
Sponsored by: Timing Solutions
kernel builds so as not to confuse with perl4 when bootstrapping from old
systems. I don't know if this is still applicable but it shouldn't hurt
to be consistant at least.
Also copy vnode_if.sh to vnode_if.pl. Doing a 'sh vnode_if.sh' when it
was a perl script was kinda silly.
the kernel while the vnode_if.h header is a bunch of inlines to call the
code that is in the kernel. Generating the .h file on the fly is kinda
bogus because it has to match the one compiled into the kernel.
IMHO we should have kern/vnode_if.c and sys/vnode_if.h committed in the
tree but that's another battle.
These drivers were cloned from the ed and ep drivers back in 1994
when PCMCIA cards were a very new thing and we had no other support
for such devices. They treated the PCIC (the chip which controls the
PCCARD slot) as part of their device and generally hacked their way
to success. They have significantly bit-rotted relative to their
ancestor drivers (ed & ep) and they were a dead-end on the evolution
path to proper PCCARD support in FreeBSD.
They have been terminally broken since August 18 where mdodd forgot
them and nobody seems to have missed them enough to fix them since.
I found no outstanding PRs against these drivers.
packet divert at kernel for IPv6/IPv4 translater daemon
This includes queue related patch submitted by jburkhol@home.com.
Submitted by: queue related patch from jburkhol@home.com
Reviewed by: freebsd-arch, cvs-committers
Obtained from: KAME project
which it replaces. The new driver supports all of the chips supported
by the ones it replaces, as well as many DEC/Intel 21143 10/100 cards.
This also completes my quest to convert things to miibus and add
Alpha support.