__acl_get_link() Retrieve an ACL by name without following
symbolic links.
__acl_set_link() Set an ACL by name without following
symbolic links.
__acl_delete_link() Delete an ACL by name without following
symbolic links.
__acl_aclcheck_link() Check an ACL against a file by name without
following symbolic links.
These calls are similar in spirit to lstat(), lchown(), lchmod(), etc,
and will be used under similar circumstances.
Obtained from: TrustedBSD Project
call is in progress on the vnode. When vput() or vrele() sees a
1->0 reference count transition, it now return without any further
action if this flag is set. This flag is necessary to avoid recursion
into VOP_INACTIVE if the filesystem inactive routine causes the
reference count to increase and then drop back to zero. It is also
used to guarantee that an unlocked vnode will not be recycled while
blocked in VOP_INACTIVE().
There are at least two cases where the recursion can occur: one is
that the softupdates code called by ufs_inactive() via ffs_truncate()
can call vput() on the vnode. This has been reported by many people
as "lockmgr: draining against myself" panics. The other case is
that nfs_inactive() can call vget() and then vrele() on the vnode
to clean up a sillyrename file.
Reviewed by: mckusick (an older version of the patch)
to treat desiredvnodes much more like a limit than as a vague concept.
On a 2GB RAM machine where desired vnodes is 130k, we run out of
kmem_map space when we hit about 190k vnodes.
If we wake up the vnode washer in getnewvnode(), sleep until it is done,
so that it has a chance to offer us a washed vnode. If we don't sleep
here we'll just race ahead and allocate yet a vnode which will never
get freed.
In the vnodewasher, instead of doing 10 vnodes per mountpoint per
rotation, do 10% of the vnodes distributed evenly across the
mountpoints.
(show thread {address})
Remove the IDLE kse state and replace it with a change in
the way threads sahre KSEs. Every KSE now has a thread, which is
considered its "owner" however a KSE may also be lent to other
threads in the same group to allow completion of in-kernel work.
n this case the owner remains the same and the KSE will revert to the
owner when the other work has been completed.
All creations of upcalls etc. is now done from
kse_reassign() which in turn is called from mi_switch or
thread_exit(). This means that special code can be removed from
msleep() and cv_wait().
kse_release() does not leave a KSE with no thread any more but
converts the existing thread into teh KSE's owner, and sets it up
for doing an upcall. It is just inhibitted from being scheduled until
there is some reason to do an upcall.
Remove all trace of the kse_idle queue since it is no-longer needed.
"Idle" KSEs are now on the loanable queue.
The duplication is caused by the fact that imgact_elf.c is included
by both imgact_elf32.c and imgact_elf64.c and both are compiled by
default on ia64. Consequently, we have two seperate copies of the
elf_legacy_coredump variable due to them being declared static, and
two entries for the same sysctl in the linker set, both referencing
the unique copy of the elf_legacy_coredump variable. Since the second
sysctl cannot be registered, one of the elf_legacy_coredump variables
can not be tuned (if ordering still holds, it's the ELF64 related one).
The only solution is to create two different sysctl variables, just
like the elf<32|64>_trace sysctl variables. This unfortunately is an
(user) interface change, but unavoidable. Thus, on ELF32 platforms
the sysctl variable is called elf32_legacy_coredump and on ELF64
platforms it is called elf64_legacy_coredump. Platforms that have
both ELF formats have both sysctl variables.
These variables should probably be retired sooner rather than later.
skipping read-only pages, which can result in valuable non-text-related
data not getting dumped, the ELF loader and the dynamic loader now mark
read-only text pages NOCORE and the coredump code only checks (primarily) for
complete inaccessibility of the page or NOCORE being set.
Certain applications which map large amounts of read-only data will
produce much larger cores. A new sysctl has been added,
debug.elf_legacy_coredump, which will revert to the old behavior.
This commit represents collaborative work by all parties involved.
The PR contains a program demonstrating the problem.
PR: kern/45994
Submitted by: "Peter Edwards" <pmedwards@eircom.net>, Archie Cobbs <archie@dellroad.org>
Reviewed by: jdp, dillon
MFC after: 7 days
_KERNEL scope from "src/sys/sys/mchain.h".
Replace each occurrence of the above in _KERNEL scope with the
appropriate macro from the set of hto(be|le)(16|32|64) and
(be|le)toh(16|32|64) from "src/sys/sys/endian.h".
Tested by: tjr
Requested by: comment marked with XXX
resource starvation we clean-up as much of the vmspace structure as we
can when the last process using it exits. The rest of the structure
is cleaned up when it is reaped. But since exit1() decrements the ref
count it is possible for a double-free to occur if someone else, such as
the process swapout code, references and then dereferences the structure.
Additionally, the final cleanup of the structure should not occur until
the last process referencing it is reaped.
This commit solves the problem by introducing a secondary reference count,
calling 'vm_exitingcnt'. The normal reference count is decremented on exit
and vm_exitingcnt is incremented. vm_exitingcnt is decremented when the
process is reaped. When both vm_exitingcnt and vm_refcnt are 0, the
structure is freed for real.
MFC after: 3 weeks
they may be the only viable ones to flush. Thus it will now wait for
an inode lock if the other alternatives will result in rollbacks (and
immediate redirtying of the buffer). If only buffers with rollbacks
are available, one will be flushed, but then the buffer daemon will
wait briefly before proceeding. Failing to wait briefly effectively
deadlocks a uniprocessor since every other process writing to that
filesystem will wait for the buffer daemon to clean up which takes
close enough to forever to feel like a deadlock.
Reported by: Archie Cobbs <archie@dellroad.org>
Sponsored by: DARPA & NAI Labs.
Approved by: re
These call uma_large_malloc() and uma_large_free() which require Giant.
Fixes panic when descriptor table is larger than KMEM_ZMAX bytes
noticed by kkenn.
Reviewed by: jhb