(due to an early reset or the like), remember to unlock the socket lock.
This will not occur in 7-CURRENT, but could in theory occur in 6-STABLE.
MFC after: 1 week
been introduced to the MAC framework:
mpo_associate_nfsd_label
mpo_create_mbuf_from_firewall
mpo_check_system_nfsd
mpo_check_vnode_mmap_downgrade
mpo_check_vnode_mprotect
mpo_init_syncache_label
mpo_destroy_syncache_label
mpo_init_syncache_from_inpcb
mpo_create_mbuf_from_syncache
MFC after: 2 weeks [1]
[1] The syncache related entry points will NOT be MFCed as the changes in
the syncache subsystem are not present in RELENG_6 yet.
exclusive access if there is at least one thread waiting for it to
become available. This may significantly reduce overhead by reducing
the number of unnecessary wakeups issued whenever the framework becomes
idle.
Annotate that we still signal the CV more than necessary and should
fix this.
Obtained from: TrustedBSD Project
Reviewed by: csjp
Tested by: csjp
manipulation is visible to the subject process. Remove XXX comments
suggesting this.
Convert one XXX on a difference from Darwin into a note: it's not a
bug, it's a feature.
Obtained from: TrustedBSD Project
- Replace XXX with Note: in several cases where observations are made about
future functionality rather than problems or bugs.
- Remove an XXX comment about byte order and au_to_ip() -- IP headers must
be submitted in network byte order. Add a comment to this effect.
- Mention that we don't implement select/poll for /dev/audit.
Obtained from: TrustedBSD Project
kernel<->policy ABI version. Add a comment to the definition describing
it and listing known versions. Modify MAC_POLICY_SET() to reference the
current kernel version by name rather than by number.
Staticize mac_late, which is used only in mac_framework.c.
Obtained from: TrustedBSD Project
mac_framework.c Contains basic MAC Framework functions, policy
registration, sysinits, etc.
mac_syscalls.c Contains implementations of various MAC system calls,
including ENOSYS stubs when compiling without options
MAC.
Obtained from: TrustedBSD Project
consumes and implements, as well as the location of the framework and
policy modules.
Refactor MAC Framework versioning a bit so that the current ABI version can
be exported via a read-only sysctl.
Further update comments relating to locking/synchronization.
Update copyright to take into account these and other recent changes.
Obtained from: TrustedBSD Project
Framework and security modules, to src/sys/security/mac/mac_policy.h,
completing the removal of kernel-only MAC Framework include files from
src/sys/sys. Update the MAC Framework and MAC policy modules. Delete
the old mac_policy.h.
Third party policy modules will need similar updating.
Obtained from: TrustedBSD Project
subsystems will be a property of policy modules, which may require
access control check entry points to be invoked even when not actively
enforcing (i.e., to track information flow without providing
protection).
Obtained from: TrustedBSD Project
Suggested by: Christopher dot Vance at sparta dot com
than from the slab, but don't.
Document mac_mbuf_to_label(), mac_copy_mbuf_tag().
Clean up white space/wrapping for other comments.
Obtained from: TrustedBSD Project
Exapnd comments on System V IPC labeling methods, which could use improved
consistency with respect to other object types.
Obtained from: TrustedBSD Project
the ifnet itself. The stack copy has been made while holding the mutex
protecting ifnet labels, so copying from the ifnet copy could result in
an inconsistent version being copied out.
Reported by: Todd.Miller@sparta.com
Obtained from: TrustedBSD Project
MFC after: 3 weeks
kernel. This LOR snuck in with some of the recent syncache changes. To
fix this, the inpcb handling was changed:
- Hang a MAC label off the syncache object
- When the syncache entry is initially created, we pickup the PCB lock
is held because we extract information from it while initializing the
syncache entry. While we do this, copy the MAC label associated with
the PCB and use it for the syncache entry.
- When the packet is transmitted, copy the label from the syncache entry
to the mbuf so it can be processed by security policies which analyze
mbuf labels.
This change required that the MAC framework be extended to support the
label copy operations from the PCB to the syncache entry, and then from
the syncache entry to the mbuf.
These functions really should be referencing the syncache structure instead
of the label. However, due to some of the complexities associated with
exposing this syncache structure we operate directly on it's label pointer.
This should be OK since we aren't making any access control decisions within
this code directly, we are merely allocating and copying label storage so
we can properly initialize mbuf labels for any packets the syncache code
might create.
This also has a nice side effect of caching. Prior to this change, the
PCB would be looked up/locked for each packet transmitted. Now the label
is cached at the time the syncache entry is initialized.
Submitted by: andre [1]
Discussed with: rwatson
[1] andre submitted the tcp_syncache.c changes
specific privilege names to a broad range of privileges. These may
require some future tweaking.
Sponsored by: nCircle Network Security, Inc.
Obtained from: TrustedBSD Project
Discussed on: arch@
Reviewed (at least in part) by: mlaier, jmg, pjd, bde, ceri,
Alex Lyashkov <umka at sevcity dot net>,
Skip Ford <skip dot ford at verizon dot net>,
Antoine Brodin <antoine dot brodin at laposte dot net>
privilege for threads and credentials. Unlike the existing suser(9)
interface, priv(9) exposes a named privilege identifier to the privilege
checking code, allowing more complex policies regarding the granting of
privilege to be expressed. Two interfaces are provided, replacing the
existing suser(9) interface:
suser(td) -> priv_check(td, priv)
suser_cred(cred, flags) -> priv_check_cred(cred, priv, flags)
A comprehensive list of currently available kernel privileges may be
found in priv.h. New privileges are easily added as required, but the
comments on adding privileges found in priv.h and priv(9) should be read
before doing so.
The new privilege interface exposed sufficient information to the
privilege checking routine that it will now be possible for jail to
determine whether a particular privilege is granted in the check routine,
rather than relying on hints from the calling context via the
SUSER_ALLOWJAIL flag. For now, the flag is maintained, but a new jail
check function, prison_priv_check(), is exposed from kern_jail.c and used
by the privilege check routine to determine if the privilege is permitted
in jail. As a result, a centralized list of privileges permitted in jail
is now present in kern_jail.c.
The MAC Framework is now also able to instrument privilege checks, both
to deny privileges otherwise granted (mac_priv_check()), and to grant
privileges otherwise denied (mac_priv_grant()), permitting MAC Policy
modules to implement privilege models, as well as control a much broader
range of system behavior in order to constrain processes running with
root privilege.
The suser() and suser_cred() functions remain implemented, now in terms
of priv_check() and the PRIV_ROOT privilege, for use during the transition
and possibly continuing use by third party kernel modules that have not
been updated. The PRIV_DRIVER privilege exists to allow device drivers to
check privilege without adopting a more specific privilege identifier.
This change does not modify the actual security policy, rather, it
modifies the interface for privilege checks so changes to the security
policy become more feasible.
Sponsored by: nCircle Network Security, Inc.
Obtained from: TrustedBSD Project
Discussed on: arch@
Reviewed (at least in part) by: mlaier, jmg, pjd, bde, ceri,
Alex Lyashkov <umka at sevcity dot net>,
Skip Ford <skip dot ford at verizon dot net>,
Antoine Brodin <antoine dot brodin at laposte dot net>
sockaddr_storage. This structure is defined in RFC 2553 and is a more
semantically correct structure for holding IP and IP6 sockaddr information.
struct sockaddr is not big enough to hold all the required information for
IP6, resulting in truncated addresses et al when auditing IP6 sockaddr
information.
We also need to assume that the sa->sa_len has been validated before the call to
audit_arg_sockaddr() is made, otherwise it could result in a buffer overflow.
This is being done to accommodate auditing of network related arguments (like
connect, bind et al) that will be added soon.
Discussed with: rwatson
Obtained from: TrustedBSD Project
MFC after: 2 weeks
begun with a repo-copy of mac.h to mac_framework.h. sys/mac.h now
contains the userspace and user<->kernel API and definitions, with all
in-kernel interfaces moved to mac_framework.h, which is now included
across most of the kernel instead.
This change is the first step in a larger cleanup and sweep of MAC
Framework interfaces in the kernel, and will not be MFC'd.
Obtained from: TrustedBSD Project
Sponsored by: SPARTA
not trust jails enough to execute audit related system calls. An example of
this is with su(1), or login(1) within prisons. So, if the syscall request
comes from a jail return ENOSYS. This will cause these utilities to operate
as if audit is not present in the kernel.
Looking forward, this problem will be remedied by allowing non privileged
users to maintain and their own audit streams, but the details on exactly how
this will be implemented needs to be worked out.
This change should fix situations when options AUDIT has been compiled into
the kernel, and utilities like su(1), or login(1) fail due to audit system
call failures within jails.
This is a RELENG_6 candidate.
Reported by: Christian Brueffer
Discussed with: rwatson
MFC after: 3 days