29 Commits

Author SHA1 Message Date
Alexander Motin
94fe9f959c - Add support for SG_GET_SG_TABLESIZE IOCTL to report that we don't support
scatter/gather lists.
- Return error for still unsupported SG 3.x API read/write calls.

MFC after:	1 month
2014-06-04 12:05:47 +00:00
Alexander Motin
fcaf473cfc Overhaul CAM SG driver IOCTL interfaces.
Make it really work for native FreeBSD programs.  Before this it was broken
for years due to different number of pointer dereferences in Linux and
FreeBSD IOCTL paths, permanently returning errors to FreeBSD programs.
This change breaks the driver FreeBSD IOCTL ABI, making it more strict,
but since it was not working any way -- who bother.

Add shims for 32-bit programs on 64-bit host, translating the argument
of the SG_IO IOCTL for both FreeBSD and Linux ABIs.

With this change I was able to run 32-bit Linux sg3_utils tools and simple
32 and 64-bit FreeBSD test tools on both 32 and 64-bit FreeBSD systems.

MFC after:	1 month
2014-06-02 19:53:53 +00:00
Alexander Motin
227d67aa54 Merge CAM locking changes from the projects/camlock branch to radically
reduce lock congestion and improve SMP scalability of the SCSI/ATA stack,
preparing the ground for the coming next GEOM direct dispatch support.

Replace big per-SIM locks with bunch of smaller ones:
 - per-LUN locks to protect device and peripheral drivers state;
 - per-target locks to protect list of LUNs on target;
 - per-bus locks to protect reference counting;
 - per-send queue locks to protect queue of CCBs to be sent;
 - per-done queue locks to protect queue of completed CCBs;
 - remaining per-SIM locks now protect only HBA driver internals.

While holding LUN lock it is allowed (while not recommended for performance
reasons) to take SIM lock.  The opposite acquisition order is forbidden.
All the other locks are leaf locks, that can be taken anywhere, but should
not be cascaded.  Many functions, such as: xpt_action(), xpt_done(),
xpt_async(), xpt_create_path(), etc. are no longer require (but allow) SIM
lock to be held.

To keep compatibility and solve cases where SIM lock can't be dropped, all
xpt_async() calls in addition to xpt_done() calls are queued to completion
threads for async processing in clean environment without SIM lock held.

Instead of single CAM SWI thread, used for commands completion processing
before, use multiple (depending on number of CPUs) threads.  Load balanced
between them using "hash" of the device B:T:L address.

HBA drivers that can drop SIM lock during completion processing and have
sufficient number of completion threads to efficiently scale to multiple
CPUs can use new function xpt_done_direct() to avoid extra context switch.
Make ahci(4) driver to use this mechanism depending on hardware setup.

Sponsored by:	iXsystems, Inc.
MFC after:	2 months
2013-10-21 12:00:26 +00:00
Alexander Motin
8d36a71b76 Unify periph invalidation and destruction reporting.
Print message containing device model and serial number on invalidation.

Requested by:   glebius
MFC after:	1 week
2013-10-15 17:59:41 +00:00
Scott Long
95fbded695 Simplify the checking of flags for cam_periph_mapmem(). This gets rid of
a lot of code redundancy and grossness at very minor expense.

Reviewed by:	smh
Obtained from:	Netflix
MFC after:	3 days
2013-06-07 00:22:38 +00:00
Kenneth D. Merry
86d45c7f3b Fix a device departure bug for the the pass(4), enc(4), sg(4) and ch(4)
drivers.

The bug occurrs when a userland process has the driver instance
open and the underlying device goes away.  We get the devfs
callback that the device node has been destroyed, but not all of
the closes necessary to fully decrement the reference count on the
CAM peripheral.

The reason is that once devfs calls back and says the device has
been destroyed, it is moved off to deadfs, and devfs guarantees
that there will be no more open or close calls.  So the solution
is to keep track of how many outstanding open calls there are on
the device, and just release that many references when we get the
callback from devfs.

scsi_pass.c,
scsi_enc.c,
scsi_enc_internal.h:	Add an open count to the softc in these
			drivers.  Increment it on open and
			decrement it on close.

			When we get a devfs callback to say that
			the device node has gone away, decrement
			the peripheral reference count by the
			number of still outstanding opens.

			Make sure we don't access the peripheral
			with cam_periph_unlock() after what might
			be the final call to
			cam_periph_release_locked().  The
			peripheral might have been freed, and we
			will be dereferencing freed memory.

scsi_ch.c,
scsi_sg.c:		For the ch(4) and sg(4) drivers, add the
			same changes described above, and in
			addition, fix another bug that was
			previously fixed in the pass(4) and enc(4)
			drivers.

			These drivers were calling destroy_dev()
			from their cleanup routine, but that could
			cause a deadlock because the cleanup
			routine could be indirectly called from
			the driver's close routine.  This would
			cause a deadlock, because the device node
			is being held open by the active close
			call, and can't be destroyed.

Sponsored by:	Spectra Logic Corporation
MFC after:	1 week
2012-12-08 04:03:04 +00:00
Alexander Motin
aa2a1aaf90 Remove 'periph == NULL' check from bunch of periph drivers.
This condition can never be true as functions are called from single place
and the checks just pollute the code and confuse Clang Static Analyzer.
2012-10-10 18:10:11 +00:00
Kenneth D. Merry
c552ebe12d Work around a race condition in devfs by changing the way closes
are handled in most CAM peripheral drivers that are not handled by
GEOM's disk class.

The usual character driver open and close semantics are that the
driver gets N open calls, but only one close, when the last caller
closes the device.

CAM peripheral drivers expect that behavior to be honored to the
letter, and the CAM peripheral driver code (specifically
cam_periph_release_locked_busses()) panics if it is done incorrectly.

Since devfs has to drop its locks while it calls a driver's close
routine, and it does not have a way to delay or prevent open calls
while it is calling the close routine, there is a race.

The sequence of events, simplified a bit, is:

- devfs acquires a lock
- devfs checks the reference count, and if it is 1, continues to close.
- devfs releases the lock

- 2nd process open call on the device happens here

- devfs calls the driver's close routine

- devfs acquires a lock
- devfs decrements the reference count
- devfs releases the lock

- 2nd process close call on the device happens here

At the second close, we get a panic in
cam_periph_release_locked_busses(), complaining that peripheral
has been released when the reference count is already 0.  This is
because we have gotten two closes in a row, which should not
happen.

The fix is to add the D_TRACKCLOSE flag to the driver's cdevsw, so
that we get a close() call for each open().  That does happen
reliably, so we can make sure that our reference counts are
correct.

Note that the sa(4) and pt(4) drivers only allow one context
through the open routine.  So these drivers aren't exposed to the
same race condition.

scsi_ch.c,
scsi_enc.c,
scsi_enc_internal.h,
scsi_pass.c,
scsi_sg.c:
		For these drivers, change the open() routine to
		increment the reference count for every open, and
		just decrement the reference count in the close.

		Call cam_periph_release_locked() in some scenarios
		to avoid additional lock and unlock calls.

scsi_pt.c:	Call cam_periph_release_locked() in some scenarios
		to avoid additional lock and unlock calls.

MFC after:	3 days
2012-05-27 06:11:09 +00:00
Kenneth D. Merry
8900f4b872 Fix a race condition in CAM peripheral free handling, locking
in the CAM XPT bus traversal code, and a number of other periph level
issues.

cam_periph.h,
cam_periph.c:	Modify cam_periph_acquire() to test the CAM_PERIPH_INVALID
		flag prior to allowing a reference count to be gained
		on a peripheral.  Callers of this function will receive
		CAM_REQ_CMP_ERR status in the situation of attempting to
		reference an invalidated periph.  This guarantees that
		a peripheral scheduled for a deferred free will not
		be accessed during its wait for destruction.

		Panic during attempts to drop a reference count on
		a peripheral that already has a zero reference count.

		In cam_periph_list(), use a local sbuf with SBUF_FIXEDLEN
		set so that mallocs do not occur while the xpt topology
		lock is held, regardless of the allocation policy of the
		passed in sbuf.

		Add a new routine, cam_periph_release_locked_buses(),
		that can be called when the caller already holds
		the CAM topology lock.

		Add some extra debugging for duplicate peripheral
		allocations in cam_periph_alloc().

		Treat CAM_DEV_NOT_THERE much the same as a selection
		timeout (AC_LOST_DEVICE is emitted), but forgo retries.

cam_xpt.c:      Revamp the way the EDT traversal code does locking
		and reference counting.  This was broken, since it
		assumed that the EDT would not change during
		traversal, but that assumption is no longer valid.

		So, to prevent devices from going away while we
		traverse the EDT, make sure we properly lock
		everything and hold references on devices that
		we are using.

		The two peripheral driver traversal routines should
		be examined.  xptpdperiphtraverse() holds the
		topology lock for the entire time it runs.
		xptperiphtraverse() is now locked properly, but
		only holds the topology lock while it is traversing
		the list, and not while the traversal function is
		running.

		The bus locking code in xptbustraverse() should
		also be revisited at a later time, since it is
		complex and should probably be simplified.

scsi_da.c:	Pay attention to the return value from cam_periph_acquire().

		Return 0 always from daclose() even if the disk is now gone.

		Add some rudimentary error injection support.

scsi_sg.c:	Fix reference counting in the sg(4) driver.

		The sg driver was calling cam_periph_release() on close,
		but never called cam_periph_acquire() (which increments
		the reference count) on open.

		The periph code correctly complained that the sg(4)
		driver was trying to decrement the refcount when it
		was already 0.

Sponsored by:	Spectra Logic
MFC after:	2 weeks
2012-01-12 00:41:48 +00:00
Alexander Motin
b8b6b5d37a Make CAM report devices with ATA/SATA transport to devstat(9) as IDE. 2011-04-14 21:25:32 +00:00
Matt Jacob
c59b4dcdb4 Pick up the right change, not it's close cousin. The one
previously submitted was wrong.

Point hat:      mjacob
X-MFC:          207933
MFC after:	1 week
2010-05-11 22:51:13 +00:00
Matt Jacob
cf454e30b6 Deal sensibly with more than 26 sg devices. It isn't a complete
solution.

Sponsored by:   Panasas
MFC after:	1 week
2010-05-11 22:22:01 +00:00
Matt Jacob
75b06c87a7 We actually can generate a host number.
MFC after:	1 month
2010-03-17 18:53:58 +00:00
Alexander Motin
1e637ba677 MFp4:
- Reduce code duplication in ATA XPT and PMP driver.
- Move PIO size setting from ada driver to ATA XPT. It is XPT business
to negotiate transfer details. ada driver is now stateless.
- Report PIO size to SIM. It is required for correct PATA SIM operation.
- Tune PMP scan timings. It workarounds some problems with SiI.
- If reset hapens during PMP initialization - restart it.
- Introduce early-initialized periph drivers, which are used during initial
scan process. Use it for xpt, probe, aprobe and pmp. It gives pmp chance
to finish scan before mountroot and numerate devices in right order.
2009-10-31 10:43:38 +00:00
Scott Long
52c9ce25d8 Separate the parallel scsi knowledge out of the core of the XPT, and
modularize it so that new transports can be created.

Add a transport for SATA

Add a periph+protocol layer for ATA

Add a driver for AHCI-compliant hardware.

Add a maxio field to CAM so that drivers can advertise their max
I/O capability.  Modify various drivers so that they are insulated
from the value of MAXPHYS.

The new ATA/SATA code supports AHCI-compliant hardware, and will override
the classic ATA driver if it is loaded as a module at boot time or compiled
into the kernel.  The stack now support NCQ (tagged queueing) for increased
performance on modern SATA drives.  It also supports port multipliers.

ATA drives are accessed via 'ada' device nodes.  ATAPI drives are
accessed via 'cd' device nodes.  They can all be enumerated and manipulated
via camcontrol, just like SCSI drives.  SCSI commands are not translated to
their ATA equivalents; ATA native commands are used throughout the entire
stack, including camcontrol.  See the camcontrol manpage for further
details.  Testing this code may require that you update your fstab, and
possibly modify your BIOS to enable AHCI functionality, if available.

This code is very experimental at the moment.  The userland ABI/API has
changed, so applications will need to be recompiled.  It may change
further in the near future.  The 'ada' device name may also change as
more infrastructure is completed in this project.  The goal is to
eventually put all CAM busses and devices until newbus, allowing for
interesting topology and management options.

Few functional changes will be seen with existing SCSI/SAS/FC drivers,
though the userland ABI has still changed.  In the future, transports
specific modules for SAS and FC may appear in order to better support
the topologies and capabilities of these technologies.

The modularization of CAM and the addition of the ATA/SATA modules is
meant to break CAM out of the mold of being specific to SCSI, letting it
grow to be a framework for arbitrary transports and protocols.  It also
allows drivers to be written to support discrete hardware without
jeopardizing the stability of non-related hardware.  While only an AHCI
driver is provided now, a Silicon Image driver is also in the works.
Drivers for ICH1-4, ICH5-6, PIIX, classic IDE, and any other hardware
is possible and encouraged.  Help with new transports is also encouraged.

Submitted by:	scottl, mav
Approved by:	re
2009-07-10 08:18:08 +00:00
Edward Tomasz Napierala
0c70e3070b Add missing 'break' statements.
Found with:	Coverity Prevent(tm)
CID:		3936, 3937
Reviewed by:	scottl@
2009-05-12 15:03:47 +00:00
Edward Tomasz Napierala
4fee613e42 Add missing 'break' statement.
Reviewed by:	scottl
Approved by:	rwatson (mentor)
Sponsored by:	FreeBSD Foundation
Found with:	Coverity Prevent(tm)
CID:		3667
2009-01-14 21:31:22 +00:00
Edward Tomasz Napierala
5f3fed855c Don't call destroy_dev(9) with a mutex held. While here, shuffle
things around so the periph destructors look alike.  Based on a patch
by Jaakko Heinonen.

Submitted by:	Jaakko Heinonen
Reviewed by:	scottl
Approved by:	rwatson (mentor)
Sponsored by:	FreeBSD Foundation
2009-01-10 17:22:49 +00:00
Scott Long
835187bff8 Fix refcount locking in cd, pass, and sg periphs. 2008-12-21 06:20:11 +00:00
Ed Schouten
d3ce832719 Remove unit2minor() use from kernel code.
When I changed kern_conf.c three months ago I made device unit numbers
equal to (unneeded) device minor numbers. We used to require
bitshifting, because there were eight bits in the middle that were
reserved for a device major number. Not very long after I turned
dev2unit(), minor(), unit2minor() and minor2unit() into macro's.
The unit2minor() and minor2unit() macro's were no-ops.

We'd better not remove these four macro's from the kernel, because there
is a lot of (external) code that may still depend on them. For now it's
harmless to remove all invocations of unit2minor() and minor2unit().

Reviewed by:	kib
2008-09-26 14:19:52 +00:00
Scott Long
85d92640f8 Add a helper function for registering async callbacks. Besides
eliminating a lot of duplicated code, this also fixes a locking edge case.
2007-05-16 16:54:23 +00:00
Scott Long
8008a935a7 Revert a driver API change to xpt_alloc_ccb that isn't necessary. Fix a
couple of associated error checks.
2007-04-18 04:58:53 +00:00
Scott Long
b653ca76bc Don't delete the devalias, as per the man page.
Submitted by: jmg
2007-04-17 01:12:35 +00:00
Scott Long
d292906a7c Destroy the devalias before destroying the dev. 2007-04-16 19:40:13 +00:00
Scott Long
2b83592fdc Remove Giant from CAM. Drivers (SIMs) now register a mutex that CAM will
use to synchornize and protect all data objects that are used for that
SIM.  Drivers that are not yet MPSAFE register Giant and operate as
usual.  RIght now, no drivers are MPSAFE, though a few will be changed
in the coming week as this work settles down.

The driver API has changed, so all CAM drivers will need to be recompiled.
The userland API has not changed, so tools like camcontrol do not need to
be recompiled.
2007-04-15 08:49:19 +00:00
Scott Long
715ab2120d A fix for the SG_GET_TIMEOUT function slipped into a previous commit by
accident.  Remove the text describing the problem as it is no longer
relevant.  Also give real implementations for the GET and SET ioctls.
2007-04-10 20:03:42 +00:00
Scott Long
4400b36d94 Make use of M_ZERO in various malloc calls. 2007-04-09 05:47:32 +00:00
Scott Long
472cdbef04 Fix a logic bug that slipped in at the last minute and apparently escaped
testing.
2007-04-09 05:43:02 +00:00
Scott Long
1eba4c7948 Add the CAM 'SG' peripheral device. This device implements a subset of the
Linux SCSI SG passthrough device API.  The intention is to allow for both
running of Linux apps that want to talk to /dev/sg* nodes, and to facilitate
porting of apps from Linux to FreeBSD.  As such, both native and linuxolator
entry points and definitions are provided.

Caveats:
 - This does not support the procfs and sysfs nodes that the Linux SG
   driver provides.  Some Linux apps may rely on these for operation,
   others may only use them for informational purposes.
 - More ioctls need to be implemented.
 - Linux uses a naming scheme of "sg[a-z]" for devices, while FreeBSD uses a
   scheme of "sg[0-9]".  Devfs aliasis (symlinks) are automatically created
   to link the two together.  However, tools like camcontrol only see the
   native names.
 - Some operations were originally designed to return byte counts or other
   data directly as the syscall return value.  The linuxolator doesn't appear
   to support this well, so this driver just punts for these cases.

Now that the driver is in place, others are welcome to add missing
functionality.  Thanks to Roman Divacky for pushing this work along.
2007-04-07 19:40:58 +00:00