bridge do a better job.
o move ether_ifdetach to the top of ieee80211_detach
o do not clear if_softc at the top of ieee80211_detach; we no longer need
this because we are safeguarded against calls coming back through if_ioctl
o simplify the bpf tracker now that we don't null if_softc
This also fixes an issue where having a bpf consumer active when a vap
is destroyed would cause a crash because bpf referenced free'd memory.
Reviewed by: imp
o track # bpf taps on monitor mode vaps instead of # monitor mode vaps
o spam monitor mode taps on tx/rx
o fix ieee80211_radiotap_rx_all to dispatch frames only if the vap is up
o while here print radiotap (and superg) state in show com
o replace DLT_IEEE802_11 support in net80211 with DLT_IEEE802_11_RADIO
and remove explicit bpf support from wireless drivers; drivers now
use ieee80211_radiotap_attach to setup shared data structures that
hold the radiotap header for each packet tx/rx
o remove rx timestamp from the rx path; it was used only by the tdma support
for debugging and was mostly useless due to it being 32-bits and mostly
unavailable
o track DLT_IEEE80211_RADIO bpf attachments and maintain per-vap and
per-com state when there are active taps
o track the number of monitor mode vaps
o use bpf tap and monitor mode vap state to decide when to collect radiotap
state and dispatch frames; drivers no longer explicitly directly check
bpf state or use bpf calls to tap frames
o handle radiotap state updates on channel change in net80211; drivers
should not do this (unless they bypass net80211 which is almost always
a mistake)
o update various drivers to be more consistent/correct in handling radiotap
o update ral to include TSF in radiotap'd frames
o add promisc mode callback to wi
Reviewed by: cbzimmer, rpaulo, thompsa
sleepable context for net80211 driver callbacks. This removes the need for USB
and firmware based drivers to roll their own code to defer the chip programming
for state changes, scan requests, channel changes and mcast/promisc updates.
When a driver callback completes the hardware state is now guaranteed to have
been updated and is in sync with net80211 layer.
This nukes around 1300 lines of code from the wireless device drivers making
them more readable and less race prone.
The net80211 layer has been updated as follows
- all state/channel changes are serialised on the taskqueue.
- ieee80211_new_state() always queues and can now be called from any context
- scanning runs from a single taskq function and executes to completion. driver
callbacks are synchronous so the channel, phy mode and rx filters are
guaranteed to be set in hardware before probe request frames are
transmitted.
Help and contributions from Sam Leffler.
Reviewed by: sam
o remove ic_myaddr from ieee80211com
o change ieee80211_ifattach to take the mac address of the physical device
and use that to setup the lladdr.
o replace all references to ic_myaddr in drivers by IF_LLADDR
o related cleanups (e.g. kill dead code)
PR: kern/133178
Reviewed by: thompsa, rpaulo
and xmit parameters. This makes it possible to use tdma on fractional
channels.
o add IEEE80211_MODE_HALF and IEEE80211_MODE_QUARTER; note these are
band-agnostic (may need revisiting)
o setup all default rates in ic_sup_rates instead of doing it only
for active modes; we need these to calculate the default tx parameters
which are not recalculated after a regulatory update (can't just
recalculate after installing a new channel list because we might
clobber user settings)
o remove special case code in ieee80211_get_suprates; this is now
a candidate for an inline or removal
o add various entries for new modes (roaming+tx params, wme, rate
mapping, scan set setup, country ie construction, tdma, basic rates)
Note these modes are intentionally not visible through if_media.
parent interface tasks to complete. This had been added to the ioctl path but
it is also need elsewhere like detach so its safe to teardown.
Reported by: Hans Petter Selasky
Submitted by: sam
turbo option in addition to the mode bits; otherwise if the current
channel is a turbo mode channel we'll form an invalid media setting
and the ifmedia_set operation in vap_attach will panic.
While here use C99-style initialization for an array indexed by mode;
this makes it consistent w/ other usage and avoids breakage if we
should ever change the set of modes.
o add net80211 support for a tdma vap that is built on top of the
existing adhoc-demo support
o add tdma scheduling of frame transmission to the ath driver; it's
conceivable other devices might be capable of this too in which case
they can make use of the 802.11 protocol additions etc.
o add minor bits to user tools that need to know: ifconfig to setup and
configure, new statistics in athstats, and new debug mask bits
While the architecture can support >2 slots in a TDMA BSS the current
design is intended (and tested) for only 2 slots.
Sponsored by: Intel
really was meant to be 256. Adjust usage accordingly and replace
bogus usage of this value in checking IEEE channel #'s.
NB: this causes an ABI change; ifconfig must be recompiled
o yank useless code for setting fixed rate through media opts: this
mechanism didn't scale to HT rates and couldn't handle multiple bands;
fixed tx rates are set with the IEEE80211_IOC_TXPARAMS ioctl
o construct a name for the com lock as done for other locks
o pass the device name to IEEE80211_LOCK_INIT so the mtx name
is constructed as foo_com_lock
o introduce *_LOCK_OBJ macro's to hide the lock contents and
minimize redundant code
o add IEEE80211_C_STA capability to indicate sta mode is supported
(was previously assumed) and mark drivers as capable
o add ieee80211_opcap array to map an opmode to the equivalent capability bit
o move IEEE80211_C_OPMODE definition to where capabilities are defined so it's
clear it should be kept in sync (on future additions)
o check device capabilities in clone create before trying to create a vap;
this makes driver checks unneeded
o make error codes return on failed clone request unique
o temporarily add console printfs on clone request failures to aid in
debugging; these will move under DIAGNOSTIC or similar before release
Note this includes changes to all drivers and moves some device firmware
loading to use firmware(9) and a separate module (e.g. ral). Also there
no longer are separate wlan_scan* modules; this functionality is now
bundled into the wlan module.
Supported by: Hobnob and Marvell
Reviewed by: many
Obtained from: Atheros (some bits)
o major overhaul of the way channels are handled: channels are now
fully enumerated and uniquely identify the operating characteristics;
these changes are visible to user applications which require changes
o make scanning support independent of the state machine to enable
background scanning and roaming
o move scanning support into loadable modules based on the operating
mode to enable different policies and reduce the memory footprint
on systems w/ constrained resources
o add background scanning in station mode (no support for adhoc/ibss
mode yet)
o significantly speedup sta mode scanning with a variety of techniques
o add roaming support when background scanning is supported; for now
we use a simple algorithm to trigger a roam: we threshold the rssi
and tx rate, if either drops too low we try to roam to a new ap
o add tx fragmentation support
o add first cut at 802.11n support: this code works with forthcoming
drivers but is incomplete; it's included now to establish a baseline
for other drivers to be developed and for user applications
o adjust max_linkhdr et. al. to reflect 802.11 requirements; this eliminates
prepending mbufs for traffic generated locally
o add support for Atheros protocol extensions; mainly the fast frames
encapsulation (note this can be used with any card that can tx+rx
large frames correctly)
o add sta support for ap's that beacon both WPA1+2 support
o change all data types from bsd-style to posix-style
o propagate noise floor data from drivers to net80211 and on to user apps
o correct various issues in the sta mode state machine related to handling
authentication and association failures
o enable the addition of sta mode power save support for drivers that need
net80211 support (not in this commit)
o remove old WI compatibility ioctls (wicontrol is officially dead)
o change the data structures returned for get sta info and get scan
results so future additions will not break user apps
o fixed tx rate is now maintained internally as an ieee rate and not an
index into the rate set; this needs to be extended to deal with
multi-mode operation
o add extended channel specifications to radiotap to enable 11n sniffing
Drivers:
o ath: add support for bg scanning, tx fragmentation, fast frames,
dynamic turbo (lightly tested), 11n (sniffing only and needs
new hal)
o awi: compile tested only
o ndis: lightly tested
o ipw: lightly tested
o iwi: add support for bg scanning (well tested but may have some
rough edges)
o ral, ural, rum: add suppoort for bg scanning, calibrate rssi data
o wi: lightly tested
This work is based on contributions by Atheros, kmacy, sephe, thompsa,
mlaier, kevlo, and others. Much of the scanning work was supported by
Atheros. The 11n work was supported by Marvell.
o add channel flag to enable freq <-> ieee channel # mapping (can
go away in the future when ieee number is precomputed)
o add mapping between 900mhz freq's and channel #'s that gives a
unique channel # for each half/quarter/full width channel
o remove assumptions that half/quarter rate channels on happen in 11a
o remove assumptions that all 11g channels are full width
o ensure ic_curchan is reset on mode change so changing the channel
list (e.g. on countrycode change) doesn't leave curchan set to an
invalid channel
There is still an issue with switching rate sets; to be fixed separately.
MFC after: 1 month
o mark 11g mode support on finding 11g or pure 11g (OFDM-only)
channels; was requiring pure 11g which caused some contortions
in drivers that manually setup their channel lists
in the Public Safety Band):
o add channel flags to identify half/quarter-rate operation
o add rate sets (need to check spec on 4Mb/s in 1/4 rate)
o add if_media definitions for new rates
o split net80211 channel setup out into ieee80211_chan_init
o fixup ieee80211_mhz2ieee and ieee80211_ieee2mhz to understand half/quarter
rate channels: note we temporarily use a nonstandard/hack numbering that
avoids overlap with 2.4G channels because we don't (yet) have enough
state to identify and/or map overlapping channel sets
o fixup ieee80211_ifmedia_init so it can be called post attach and will
recalculate the channel list and associated state; this enables changing
channel-related state like the regulatory domain after attach (will be
needed for 802.11d support too)
o add ieee80211_get_suprates to return a reference to the supported rate
set for a given channel
o add 3, 4.5, and 27 MB/s tx rates to rate <-> media conversion routines
o const-poison channel arg to ieee80211_chan2mode
required to. Note this only happens when drivers don't set them
up before calling ieee80211_ifattach so this change is backwards
compatible.
MFC after: 1 month