buf_start() to avoid triggering a panic in softdep_disk_io_initiation()
if b_iocmd happened to be BIO_READ. The later initialisation of
b_iocmd in cluster_wbuild() could probably be moved to before the
buf_start() call, but this patch keeps the change as simple as
possible.
This is reported to fix occasional "softdep_disk_io_initiation: read"
panics, especially on NFS servers.
Reported by: Nick Hilliard <nick@netability.ie>
Tested by: Nick Hilliard <nick@netability.ie>
Approved by: re (rwatson)
than a MAXPHYS size block ahead. Having this set too high just leaves
other processes starved for IO and screws up interactive response. Let the
users with RAID set it higher when they need it.
- Issue the io that we will later block on prior to doing cluster read ahead
so that it is more likely to be ready when we block.
- Loop issuing clustered reads until we've exhausted the seq count supplied
by the file system.
- Use a sysctl tunable "vfs.read_max" to determine the maximum number of
blocks that we'll read ahead.
- Use gbincore() and not incore() so that we can drop the vnode interlock
as we acquire the buflock.
- Use GB_LOCK_NOWAIT when getting bufs for read ahead clusters so that we
don't block on locked bufs.
- Convert a while loop to a howmany() that will most likely be faster on
modern processors. There is another while loop divide that was left
near by because it is operating on a 64bit int and is most likely faster.
- Cleanup the cluster_read() code a little to get rid of a goto and make
the logic clearer.
Tested on: x86, alpha
Tested by: Steve Kargl <sgk@troutmask.apl.washington.edu>
Reviewd by: arch
- Define one flag GB_LOCK_NOWAIT that tells getblk() to pass the LK_NOWAIT
flag to the initial BUF_LOCK(). This will eventually be used in cases
were we want to use a buffer only if it is not currently in use.
- Convert all consumers of the getblk() api to use this extra parameter.
Reviwed by: arch
Not objected to by: mckusick
- Remove the buftimelock mutex and acquire the buf's interlock to protect
these fields instead.
- Hold the vnode interlock while locking bufs on the clean/dirty queues.
This reduces some cases from one BUF_LOCK with a LK_NOWAIT and another
BUF_LOCK with a LK_TIMEFAIL to a single lock.
Reviewed by: arch, mckusick
methodology similar to the vm_map_entry splay and the VM splay that Alan
Cox is working on. Extensive testing has appeared to have shown no
increase in overhead.
Disadvantages
Dirties more cache lines during lookups.
Not as fast as a hash table lookup (but still N log N and optimal
when there is locality of reference).
Advantages
vnode->v_dirtyblkhd is now perfectly sorted, making fsync/sync/filesystem
syncer operate more efficiently.
I get to rip out all the old hacks (some of which were mine) that tried
to keep the v_dirtyblkhd tailq sorted.
The per-vnode splay tree should be easier to lock / SMPng pushdown on
vnodes will be easier.
This commit along with another that Alan is working on for the VM page
global hash table will allow me to implement ranged fsync(), optimize
server-side nfs commit rpcs, and implement partial syncs by the
filesystem syncer (aka filesystem syncer would detect that someone is
trying to get the vnode lock, remembers its place, and skip to the
next vnode).
Note that the buffer cache splay is somewhat more complex then other splays
due to special handling of background bitmap writes (multiple buffers with
the same lblkno in the same vnode), and B_INVAL discontinuities between the
old hash table and the existence of the buffer on the v_cleanblkhd list.
Suggested by: alc
filesystem expands the inode to 256 bytes to make space for 64-bit
block pointers. It also adds a file-creation time field, an ability
to use jumbo blocks per inode to allow extent like pointer density,
and space for extended attributes (up to twice the filesystem block
size worth of attributes, e.g., on a 16K filesystem, there is space
for 32K of attributes). UFS2 fully supports and runs existing UFS1
filesystems. New filesystems built using newfs can be built in either
UFS1 or UFS2 format using the -O option. In this commit UFS1 is
the default format, so if you want to build UFS2 format filesystems,
you must specify -O 2. This default will be changed to UFS2 when
UFS2 proves itself to be stable. In this commit the boot code for
reading UFS2 filesystems is not compiled (see /sys/boot/common/ufsread.c)
as there is insufficient space in the boot block. Once the size of the
boot block is increased, this code can be defined.
Things to note: the definition of SBSIZE has changed to SBLOCKSIZE.
The header file <ufs/ufs/dinode.h> must be included before
<ufs/ffs/fs.h> so as to get the definitions of ufs2_daddr_t and
ufs_lbn_t.
Still TODO:
Verify that the first level bootstraps work for all the architectures.
Convert the utility ffsinfo to understand UFS2 and test growfs.
Add support for the extended attribute storage. Update soft updates
to ensure integrity of extended attribute storage. Switch the
current extended attribute interfaces to use the extended attribute
storage. Add the extent like functionality (framework is there,
but is currently never used).
Sponsored by: DARPA & NAI Labs.
Reviewed by: Poul-Henning Kamp <phk@freebsd.org>
the bio and buffer structures to have daddr64_t bio_pblkno,
b_blkno, and b_lblkno fields which allows access to disks
larger than a Terabyte in size. This change also requires
that the VOP_BMAP vnode operation accept and return daddr64_t
blocks. This delta should not affect system operation in
any way. It merely sets up the necessary interfaces to allow
the development of disk drivers that work with these larger
disk block addresses. It also allows for the development of
UFS2 which will use 64-bit block addresses.
Includes some minor whitespace changes, and re-ordering to be able to document
properly (e.g, grouping of variables and the SYSCTL macro calls for them, where
the documentation has been added.)
Reviewed by: phk (but all errors are mine)
in wdrain during a write. This flag needs to be used in devices whos
strategy routines turn-around and issue another high level I/O, such as
when MD turns around and issues a VOP_WRITE to vnode backing store, in order
to avoid deadlocking the dirty buffer draining code.
Remove a vprintf() warning from MD when the backing vnode is found to be
in-use. The syncer of buf_daemon could be flushing the backing vnode at
the time of an MD operation so the warning is not correct.
MFC after: 1 week
or the cluster will not be properly merged. Dup the code from
cluster_wbuild() and add some printf()s to see if bad cases are present.
MFC after: 2 weeks
- crhold() returns a reference to the ucred whose refcount it bumps.
- crcopy() now simply copies the credentials from one credential to
another and has no return value.
- a new crshared() primitive is added which returns true if a ucred's
refcount is > 1 and false (0) otherwise.
(this commit is just the first stage). Also add various GIANT_ macros to
formalize the removal of Giant, making it easy to test in a more piecemeal
fashion. These macros will allow us to test fine-grained locks to a degree
before removing Giant, and also after, and to remove Giant in a piecemeal
fashion via sysctl's on those subsystems which the authors believe can
operate without Giant.
Tor created a while ago, removes the raw I/O piece (that has cache coherency
problems), and adds a buffer cache / VM freeing piece.
Essentially this patch causes O_DIRECT I/O to not be left in the cache, but
does not prevent it from going through the cache, hence the 80%. For
the last 20% we need a method by which the I/O can be issued directly to
buffer supplied by the user process and bypass the buffer cache entirely,
but still maintain cache coherency.
I also have the code working under -stable but the changes made to sys/file.h
may not be MFCable, so an MFC is not on the table yet.
Submitted by: tegge, dillon
vm_mtx does not recurse and is required for most low level
vm operations.
faults can not be taken without holding Giant.
Memory subsystems can now call the base page allocators safely.
Almost all atomic ops were removed as they are covered under the
vm mutex.
Alpha and ia64 now need to catch up to i386's trap handlers.
FFS and NFS have been tested, other filesystems will need minor
changes (grabbing the vm lock when twiddling page properties).
Reviewed (partially) by: jake, jhb
VOP_BWRITE() was a hack which made it possible for NFS client
side to use struct buf with non-bio backing.
This patch takes a more general approach and adds a bp->b_op
vector where more methods can be added.
The success of this patch depends on bp->b_op being initialized
all relevant places for some value of "relevant" which is not
easy to determine. For now the buffers have grown a b_magic
element which will make such issues a tiny bit easier to debug.
hit on the client side and prevent the server side from retiring writes.
Pipeline operations turned off for all READs (no big loss since reads are
usually synchronous) and for NFS writes, and left on for the default bwrite().
(MFC expected prior to 4.3 freeze)
Testing by: mjacob, dillon
This is an odd one. This patch appears to fix a panic related to background
bitmap writes (for FFS), though neither Kirk, Ian, or I can figure out how
B_CLUSTEROK could possibly be set on a bitmap block to cause the clustering
code to improperly cluster with a buffer undergoing a background write.
In anycase, the clustering code is very fragile and this patch helps with
that, as well as possibly fixing a bug Andre was having.
Suggested by: Ian Dowse <iedowse@maths.tcd.ie>
Testing by: Andre Albsmeier <andre.albsmeier@mchp.siemens.de>
in 4.2-REL which I ripped out in -stable and -current when implementing the
low-memory handling solution. However, maxlaunder turns out to be the saving
grace in certain very heavily loaded systems (e.g. newsreader box). The new
algorithm limits the number of pages laundered in the first pageout daemon
pass. If that is not sufficient then suceessive will be run without any
limit.
Write I/O is now pipelined using two sysctls, vfs.lorunningspace and
vfs.hirunningspace. This prevents excessive buffered writes in the
disk queues which cause long (multi-second) delays for reads. It leads
to more stable (less jerky) and generally faster I/O streaming to disk
by allowing required read ops (e.g. for indirect blocks and such) to occur
without interrupting the write stream, amoung other things.
NOTE: eventually, filesystem write I/O pipelining needs to be done on a
per-device basis. At the moment it is globalized.
Removed most of the hacks that were trying to deal with low-memory
situations prior to now.
The new code is based on the concept that I/O must be able to function in
a low memory situation. All major modules related to I/O (except
networking) have been adjusted to allow allocation out of the system
reserve memory pool. These modules now detect a low memory situation but
rather then block they instead continue to operate, then return resources
to the memory pool instead of cache them or leave them wired.
Code has been added to stall in a low-memory situation prior to a vnode
being locked.
Thus situations where a process blocks in a low-memory condition while
holding a locked vnode have been reduced to near nothing. Not only will
I/O continue to operate, but many prior deadlock conditions simply no
longer exist.
Implement a number of VFS/BIO fixes
(found by Ian): in biodone(), bogus-page replacement code, the loop
was not properly incrementing loop variables prior to a continue
statement. We do not believe this code can be hit anyway but we
aren't taking any chances. We'll turn the whole section into a
panic (as it already is in brelse()) after the release is rolled.
In biodone(), the foff calculation was incorrectly
clamped to the iosize, causing the wrong foff to be calculated
for pages in the case of an I/O error or biodone() called without
initiating I/O. The problem always caused a panic before. Now it
doesn't. The problem is mainly an issue with NFS.
Fixed casts for ~PAGE_MASK. This code worked properly before only
because the calculations use signed arithmatic. Better to properly
extend PAGE_MASK first before inverting it for the 64 bit masking
op.
In brelse(), the bogus_page fixup code was improperly throwing
away the original contents of 'm' when it did the j-loop to
fix the bogus pages. The result was that it would potentially
invalidate parts of the *WRONG* page(!), leading to corruption.
There may still be cases where a background bitmap write is
being duplicated, causing potential corruption. We have identified
a potentially serious bug related to this but the fix is still TBD.
So instead this patch contains a KASSERT to detect the problem
and panic the machine rather then continue to corrupt the filesystem.
The problem does not occur very often.. it is very hard to
reproduce, and it may or may not be the cause of the corruption
people have reported.
Review by: (VFS/BIO: mckusick, Ian Dowse <iedowse@maths.tcd.ie>)
Testing by: (VM/Deadlock) Paul Saab <ps@yahoo-inc.com>
<sys/bio.h>.
<sys/bio.h> is now a prerequisite for <sys/buf.h> but it shall
not be made a nested include according to bdes teachings on the
subject of nested includes.
Diskdrivers and similar stuff below specfs::strategy() should no
longer need to include <sys/buf.> unless they need caching of data.
Still a few bogus uses of struct buf to track down.
Repocopy by: peter
Exceptions:
Vinum untouched. This means that it cannot be compiled.
Greg Lehey is on the case.
CCD not converted yet, casts to struct buf (still safe)
atapi-cd casts to struct buf to examine B_PHYS
(Much of this done by script)
Move B_ORDERED flag to b_ioflags and call it BIO_ORDERED.
Move b_pblkno and b_iodone_chain to struct bio while we transition, they
will be obsoleted once bio structs chain/stack.
Add bio_queue field for struct bio aware disksort.
Address a lot of stylistic issues brought up by bde.
async I/O's. The sequential read heuristic has been extended to
cover writes as well. We continue to call cluster_write() normally,
thus blocks in the file will still be reallocated for large (but still
random) I/O's, but I/O will only be initiated for truely sequential
writes.
This solves a number of annoying situations, especially with DBM (hash
method) writes, and also has the side effect of fixing a number of
(stupid) benchmarks.
Reviewed-by: mckusick
field in struct buf: b_iocmd. The b_iocmd is enforced to have
exactly one bit set.
B_WRITE was bogusly defined as zero giving rise to obvious coding
mistakes.
Also eliminate the redundant struct buf flag B_CALL, it can just
as efficiently be done by comparing b_iodone to NULL.
Should you get a panic or drop into the debugger, complaining about
"b_iocmd", don't continue. It is likely to write on your disk
where it should have been reading.
This change is a step in the direction towards a stackable BIO capability.
A lot of this patch were machine generated (Thanks to style(9) compliance!)
Vinum users: Greg has not had time to test this yet, be careful.