This change is build on top of nexthop objects introduced in r359823.
Nexthops are separate datastructures, containing all necessary information
to perform packet forwarding such as gateway interface and mtu. Nexthops
are shared among the routes, providing more pre-computed cache-efficient
data while requiring less memory. Splitting the LPM code and the attached
data solves multiple long-standing problems in the routing layer,
drastically reduces the coupling with outher parts of the stack and allows
to transparently introduce faster lookup algorithms.
Route caching was (re)introduced to minimise (slow) routing lookups, allowing
for notably better performance for large TCP senders. Caching works by
acquiring rtentry reference, which is protected by per-rtentry mutex.
If the routing table is changed (checked by comparing the rtable generation id)
or link goes down, cache record gets withdrawn.
Nexthops have the same reference counting interface, backed by refcount(9).
This change merely replaces rtentry with the actual forwarding nextop as a
cached object, which is mostly mechanical. Other moving parts like cache
cleanup on rtable change remains the same.
Differential Revision: https://reviews.freebsd.org/D24340
In r231852 I added in6_selectroute_fib() as a compat function with the
fibnum as an extra argument compared to in6_selectroute() to keep the
KPI stable.
Way too late retire this function again and add the fib to in6_selectroute()
which also only has a single consumer now and was an orphan function before.
Remove the KAME custom circular queue for fragments and fragmented packets
and replace them with a standard TAILQ.
This make the code a lot more understandable and maintainable and removes
further hand-rolled code from the the tree using a standard interface instead.
Hide the still public structures under #ifdef _KERNEL as there is no
use for them in user space.
The naming is a bit confusing now as struct ip6q and the ip6q[] buckets
array are not the same anymore; sadly struct ip6q is also used by the
MAC framework and we cannot rename it.
Submitted by: jtl (initally)
MFC after: 3 weeks
Sponsored by: Netflix
Differential Revision: https://reviews.freebsd.org/D16847 (jtl's original)
When shutting down a VNET we did not cleanup the fragmentation hashes.
This has multiple problems: (1) leak memory but also (2) leak on the
global counters, which might eventually lead to a problem on a system
starting and stopping a lot of vnets and dealing with a lot of IPv6
fragments that the counters/limits would be exhausted and processing
would no longer take place.
Unfortunately we do not have a useable variable to indicate when
per-VNET initialization of frag6 has happened (or when destroy happened)
so introduce a boolean to flag this. This is needed here as well as
it was in r353635 for ip_reass.c in order to avoid tripping over the
already destroyed locks if interfaces go away after the frag6 destroy.
While splitting things up convert the TRY_LOCK to a LOCK operation in
now frag6_drain_one(). The try-lock was derived from a manual hand-rolled
implementation and carried forward all the time. We no longer can afford
not to get the lock as that would mean we would continue to leak memory.
Assert that all the buckets are empty before destroying to lock to
ensure long-term stability of a clean shutdown.
Reported by: hselasky
Reviewed by: hselasky
MFC after: 3 weeks
Sponsored by: Netflix
Differential Revision: https://reviews.freebsd.org/D22054
Move ip6asfrag and the accompanying IP6_REASS_MBUF macro from
ip6_var.h into frag6.c as they are not used outside frag6.c.
Sadly struct ip6q is all over the mac framework so we have to
leave it public.
This reduces the public KPI space.
MFC after: 3 months
X-MFC: possibly MFC the #define only to stable branches
Sponsored by: Netflix
Move the sysctls and the related variables only used in frag6.c
into the file and out of in6_proto.c. That way everything belonging
together is in one place.
Sort the variables into global and per-vnet scopes and make
them static. No longer export the (helper) function
frag6_set_bucketsize() now also file-local only.
Should be no functional changes, only reduced public KPI/KBI surface.
MFC after: 3 months
Sponsored by: Netflix
instead of a linear array.
The multicast memberships for the inpcb structure are protected by a
non-sleepable lock, INP_WLOCK(), which needs to be dropped when
calling the underlying possibly sleeping if_ioctl() method. When using
a linear array to keep track of multicast memberships, the computed
memory location of the multicast filter may suddenly change, due to
concurrent insertion or removal of elements in the linear array. This
in turn leads to various invalid memory access issues and kernel
panics.
To avoid this problem, put all multicast memberships on a STAILQ based
list. Then the memory location of the IPv4 and IPv6 multicast filters
become fixed during their lifetime and use after free and memory leak
issues are easier to track, for example by: vmstat -m | grep multi
All list manipulation has been factored into inline functions
including some macros, to easily allow for a future hash-list
implementation, if needed.
This patch has been tested by pho@ .
Differential Revision: https://reviews.freebsd.org/D20080
Reviewed by: markj @
MFC after: 1 week
Sponsored by: Mellanox Technologies
Add a stat counter to track ipv6 atomic fragments. Atomic fragments can be
generated in response to invalid path MTU values, but are also a potential
attack vector and considered harmful (see RFC6946 and RFC8021).
While here add tracking of the atomic fragment counter to netstat and systat.
Reviewed by: tuexen, jtl, bz
Approved by: jtl (mentor), bz (mentor)
Event: Aberdeen hackathon 2019
Differential Revision: https://reviews.freebsd.org/D17511
All changes are hidden behind the EXPERIMENTAL option and are not compiled
in by default.
Add ND6_IFF_IPV6_ONLY_MANUAL to be able to set the interface into no-IPv4-mode
manually without router advertisement options. This will allow developers to
test software for the appropriate behaviour even on dual-stack networks or
IPv6-Only networks without the option being set in RA messages.
Update ifconfig to allow setting and displaying the flag.
Update the checks for the filters to check for either the automatic or the manual
flag to be set. Add REVARP to the list of filtered IPv4-related protocols and add
an input filter similar to the output filter.
Add a check, when receiving the IPv6-Only RA flag to see if the receiving
interface has any IPv4 configured. If it does, ignore the IPv6-Only flag.
Add a per-VNET global sysctl, which is on by default, to not process the automatic
RA IPv6-Only flag. This way an administrator (if this is compiled in) has control
over the behaviour in case the node still relies on IPv4.
The KPI have been reviewed and cleansed of features that were planned
back 20 years ago and never implemented. The pfil(9) internals have
been made opaque to protocols with only returned types and function
declarations exposed. The KPI is made more strict, but at the same time
more extensible, as kernel uses same command structures that userland
ioctl uses.
In nutshell [KA]PI is about declaring filtering points, declaring
filters and linking and unlinking them together.
New [KA]PI makes it possible to reconfigure pfil(9) configuration:
change order of hooks, rehook filter from one filtering point to a
different one, disconnect a hook on output leaving it on input only,
prepend/append a filter to existing list of filters.
Now it possible for a single packet filter to provide multiple rulesets
that may be linked to different points. Think of per-interface ACLs in
Cisco or Juniper. None of existing packet filters yet support that,
however limited usage is already possible, e.g. default ruleset can
be moved to single interface, as soon as interface would pride their
filtering points.
Another future feature is possiblity to create pfil heads, that provide
not an mbuf pointer but just a memory pointer with length. That would
allow filtering at very early stages of a packet lifecycle, e.g. when
packet has just been received by a NIC and no mbuf was yet allocated.
Differential Revision: https://reviews.freebsd.org/D18951
There is a hashing algorithm which should distribute IPv6 reassembly
queues across the available buckets in a relatively even way. However,
if there is a flaw in the hashing algorithm which allows a large number
of IPv6 fragment reassembly queues to end up in a single bucket, a per-
bucket limit could help mitigate the performance impact of this flaw.
Implement such a limit, with a default of twice the maximum number of
reassembly queues divided by the number of buckets. Recalculate the
limit any time the maximum number of reassembly queues changes.
However, allow the user to override the value using a sysctl
(net.inet6.ip6.maxfragbucketsize).
Reviewed by: jhb
Security: FreeBSD-SA-18:10.ip
Security: CVE-2018-6923
The IPv4 fragment reassembly code supports a limit on the number of
fragments per packet. The default limit is currently 17 fragments.
Among other things, this limit serves to limit the number of fragments
the code must parse when trying to reassembly a packet.
Add a limit to the IPv6 reassembly code. By default, limit a packet
to 65 fragments (64 on the queue, plus one final fragment to complete
the packet). This allows an average fragment size of 1,008 bytes, which
should be sufficient to hold a fragment. (Recall that the IPv6 minimum
MTU is 1280 bytes. Therefore, this configuration allows a full-size
IPv6 packet to be fragmented on a link with the minimum MTU and still
carry approximately 272 bytes of headers before the fragmented portion
of the packet.)
Users can adjust this limit using the net.inet6.ip6.maxfragsperpacket
sysctl.
Reviewed by: jhb
Security: FreeBSD-SA-18:10.ip
Security: CVE-2018-6923
The IPv6 reassembly fragment limit is based on the number of mbuf clusters,
which are a global resource. However, the limit is currently applied
on a per-VNET basis. Given enough VNETs (or given sufficient customization
on enough VNETs), it is possible that the sum of all the VNET fragment
limits will exceed the number of mbuf clusters available in the system.
Given the fact that the fragment limits are intended (at least in part) to
regulate access to a global resource, the IPv6 fragment limit should
be applied on a global basis.
Note that it is still possible to disable fragmentation for a particular
VNET by setting the net.inet6.ip6.maxfragpackets sysctl to 0 for that
VNET. In addition, it is now possible to disable fragmentation globally
by setting the net.inet6.ip6.maxfrags sysctl to 0.
Reviewed by: jhb
Security: FreeBSD-SA-18:10.ip
Security: CVE-2018-6923
Avoid the ugly unlock / lock of the inpcbinfo where we need to
figure out what kind of lock we hold by simply deferring the
operation to another context. (Also a small dependency for
converting the pcbinfo read lock to epoch)
Instead of returning pointer to the previous header, return its offset.
In frag6_input() use m_copyback() and determined offset to store next
header instead of accessing to it by pointer and assuming that the memory
is contiguous.
In rip6_input() use offset returned by ip6_get_prevhdr() instead of
calculating it from pointers arithmetic, because IP header can belong
to another mbuf in the chain.
Reported by: Maxime Villard <max at m00nbsd dot net>
Reviewed by: kp
MFC after: 1 week
Differential Revision: https://reviews.freebsd.org/D14158
Mainly focus on files that use BSD 3-Clause license.
The Software Package Data Exchange (SPDX) group provides a specification
to make it easier for automated tools to detect and summarize well known
opensource licenses. We are gradually adopting the specification, noting
that the tags are considered only advisory and do not, in any way,
superceed or replace the license texts.
Special thanks to Wind River for providing access to "The Duke of
Highlander" tool: an older (2014) run over FreeBSD tree was useful as a
starting point.
Renumber cluase 4 to 3, per what everybody else did when BSD granted
them permission to remove clause 3. My insistance on keeping the same
numbering for legal reasons is too pedantic, so give up on that point.
Submitted by: Jan Schaumann <jschauma@stevens.edu>
Pull Request: https://github.com/freebsd/freebsd/pull/96
specific order. VNET_SYSUNINITs however are doing exactly that.
Thus remove the VIMAGE conditional field from the domain(9) protosw
structure and replace it with VNET_SYSUNINITs.
This also allows us to change some order and to make the teardown functions
file local static.
Also convert divert(4) as it uses the same mechanism ip(4) and ip6(4) use
internally.
Slightly reshuffle the SI_SUB_* fields in kernel.h and add a new ones, e.g.,
for pfil consumers (firewalls), partially for this commit and for others
to come.
Reviewed by: gnn, tuexen (sctp), jhb (kernel.h)
Obtained from: projects/vnet
MFC after: 2 weeks
X-MFC: do not remove pr_destroy
Sponsored by: The FreeBSD Foundation
Differential Revision: https://reviews.freebsd.org/D6652
The m_ext.ext_cnt pointer becomes a union. It can now hold the refcount
value itself. To tell that m_ext.ext_flags flag EXT_FLAG_EMBREF is used.
The first mbuf to attach a cluster stores the refcount. The further mbufs
to reference the cluster point at refcount in the first mbuf. The first
mbuf is freed only when the last reference is freed.
The benefit over refcounts stored in separate slabs is that now refcounts
of different, unrelated mbufs do not share a cache line.
For EXT_EXTREF mbufs the zone_ext_refcnt is no longer needed, and m_extadd()
becomes void, making widely used M_EXTADD macro safe.
For EXT_SFBUF mbufs the sf_ext_ref() is removed, which was an optimization
exactly against the cache aliasing problem with regular refcounting.
Discussed with: rrs, rwatson, gnn, hiren, sbruno, np
Reviewed by: rrs
Differential Revision: https://reviews.freebsd.org/D5396
Sponsored by: Netflix
in6_selectsrc() has 2 class of users: socket-based one (raw/udp/pcb/etc) and
socket-less (ND code). The main reason for that change is inability to
specify non-default FIB for callers w/o socket since (internally) inpcb
is used to determine fib.
As as result, add 2 wrappers for in6_selectsrc() (making in6_selectsrc()
static):
1) in6_selectsrc_socket() for the former class. Embed scope_ambiguous check
along with returning hop limit when needed.
2) in6_selectsrc_addr() for the latter case. Add 'fibnum' argument and
pass IPv6 address w/ explicitly specified scope as separate argument.
Reviewed by: ae (previous version)
in6_selectif().
The main task of in6_selectsrc() is to return IPv6 SAS (along with
output interface used for scope checks). No data-path code uses
route argument for caching. The only users are icmp6 (reflect code),
ND6 ns/na generation code. All this fucntions are control-plane, so
there is no reason to try to 'optimize' something by passing cached
route into to ip6_output(). Given that, simplify code by eliminating
in6_selectsrc() 'struct route_in6' argument. Since in6_selectif() is
used only by in6_selectsrc(), eliminate its 'struct route_in6' argument,
too. While here, reshape rte-related code inside in6_selectif() to
free lookup result immediately after saving all the needed fields.
This is required for fragments and encapsulated data (eg tunneling) to be redistributed
to the RSS bucket based on the eventual IPv6 header and protocol (TCP, UDP, etc) header.
* Add an mbuf tag with the state of IPv6 options parsing before the frame is queued
into the direct dispatch handler;
* Continue processing and complete the frame reception in the correct RSS bucket /
netisr context.
Testing results are in the phabricator review.
Differential Revision: https://reviews.freebsd.org/D3563
Submitted by: Tiwei Bie <btw@mail.ustc.edu.cn>
This mirrors the basic IPv4 implementation - IPv6 packets under RSS
now are checked for a correct RSS hash and if one isn't provided,
it's done in software.
This only handles the initial receive - it doesn't yet handle
reinjecting / rehashing packets after being decapsulated from
various tunneling setups. That'll come in some follow-up work.
For non-RSS users, this is almost a giant no-op.
It does change a couple of ipv6 methods to use const mbuf * instead of
mbuf * but it doesn't have any functional changes.
So, the following now occurs:
* If the NIC doesn't do any RSS hashing, it's all done in software.
Single-queue, non-RSS NICs will now have the RX path distributed
into multiple receive netisr queues.
* If the NIC provides the wrong hash (eg only IPv6 hash when we needed
an IPv6 TCP hash, or IPv6 UDP hash when we expected IPv6 hash)
then the hash is recalculated.
* .. if the hash is recalculated, it'll end up being injected into
the correct netisr queue for v6 processing.
Submitted by: Tiwei Bie <btw@mail.ustc.edu.cn>
Differential Revision: https://reviews.freebsd.org/D3504
Do not pass 'dst' sockaddr to ip[6]_mloopback:
- We have explicit check for AF_INET in ip_output()
- We assume ip header inside passed mbuf in ip_mloopback
- We assume ip6 header inside passed mbuf in ip6_mloopback
When forwarding fragmented IPv6 packets and filtering with PF we
reassemble and refragment. That means we generate new fragment headers
and a new fragment ID.
We already save the fragment IDs so we can do the reassembly so it's
straightforward to apply the incoming fragment ID on the refragmented
packets.
Differential Revision: https://reviews.freebsd.org/D2188
Approved by: gnn (mentor)
When several threads are trying to send datagram to the same destination,
but fragmentation is disabled and datagram size exceeds link MTU,
ip6_output() calls pfctlinput2(PRC_MSGSIZE). It does notify all
sockets wanted to know MTU to this destination. And since all threads
hold PCB lock while sending, taking the lock for each PCB in the
in6_pcbnotify() leads to deadlock.
RFC 3542 p.11.3 suggests notify all application wanted to receive
IPV6_PATHMTU ancillary data for each ICMPv6 packet too big message.
But it doesn't require this, when we don't receive ICMPv6 message.
Change ip6_notify_pmtu() function to be able use it directly from
ip6_output() to notify only one socket, and to notify all sockets
when ICMPv6 packet too big message received.
PR: 197059
Differential Revision: https://reviews.freebsd.org/D1949
Reviewed by: no objection from #network
Obtained from: Yandex LLC
MFC after: 1 week
Sponsored by: Yandex LLC
have chosen different (and more traditional) stateless/statuful
NAT64 as translation mechanism. Last non-trivial commits to both
faith(4) and faithd(8) happened more than 12 years ago, so I assume
it is time to drop RFC3142 in FreeBSD.
No objections from: net@
It isn't safe to keep unreferenced ifaddrs. Use in6ifa_ifwithaddr() to
determine ifaddr corresponding to destination address. Since currently
we keep addresses with embedded scope zone, in6ifa_ifwithaddr is called
with zero zoneid and marked with XXX.
Also remove route and lle lookups from ip6_input. Use in6ifa_ifwithaddr()
instead.
Sponsored by: Yandex LLC
For IPv6-in-IPv4, you may need to do the following command
on the tunnel interface if it is configured as IPv4 only:
ifconfig <interface> inet6 -ifdisabled
Code logic inspired from NetBSD.
PR: kern/169438
Submitted by: emeric.poupon@netasq.com
Reviewed by: fabient, ae
Obtained from: NETASQ
the protocol specific mbuf flags are shared between them.
- Move all M_FOO definitions into a single place: netinet/in6.h, to
avoid future clashes.
- Resolve clash between M_DECRYPTED and M_SKIP_FIREWALL which resulted
in a failure of operation of IPSEC and packet filters.
Thanks to Nicolas and Georgios for all the hard work on bisecting,
testing and finally finding the root of the problem.
PR: kern/186755
PR: kern/185876
In collaboration with: Georgios Amanakis <gamanakis gmail.com>
In collaboration with: Nicolas DEFFAYET <nicolas-ml deffayet.com>
Sponsored by: Nginx, Inc.
flag instead. The flag is only used within the IP and IPv6 layer 3
protocols.
Because some firewall packages treat IPv4 and IPv6 packets the same the
flag should have the same value for both.
Discussed with: trociny, glebius
Instead, add protocol specific mbuf flags M_IP_NEXTHOP and
M_IP6_NEXTHOP. Use them to indicate that the mbuf's chain
contains the PACKET_TAG_IPFORWARD tag. And do a tag lookup
only when this flag is set.
Suggested by: andre
Hide the ip6aux functions. The only one referenced outside ip6_input.c
is not compiled in yet (__notyet__) in route6.c (r235954). We do have
accessor functions that should be used.
Sponsored by: The FreeBSD Foundation
Sponsored by: iXsystems
Reviewed by: gnn (as part of the whole)
MFC After: 3 days
X-MFC: KPI?
call in an #if 0 section.
In in6_selecthlim() optimize a case where in6p cannot be NULL due to an
earlier check.
More consistently use u_int instead of int for fibnum function arguments.
Sponsored by: Cisco Systems, Inc.
MFC after: 3 days
the original IPv4 implementation from r178888:
- Use RT_DEFAULT_FIB in the IPv4 implementation where noticed.
- Use rt*fib() KPI with explicit RT_DEFAULT_FIB where applicable in
the NFS code.
- Use the new in6_rt* KPI in TCP, gif(4), and the IPv6 network stack
where applicable.
- Split in6_rtqtimo() and in6_mtutimo() as done in IPv4 and equally
prevent multiple initializations of callouts in in6_inithead().
- Use wrapper functions where needed to preserve the current KPI to
ease MFCs. Use BURN_BRIDGES to indicate expected future cleanup.
- Fix (related) comments (both technical or style).
- Convert to rtinit() where applicable and only use custom loops where
currently not possible otherwise.
- Multicast group, most neighbor discovery address actions and faith(4)
are locked to the default FIB. Individual IPv6 addresses will only
appear in the default FIB, however redirect information and prefixes
of connected subnets are automatically propagated to all FIBs by
default (mimicking IPv4 behavior as closely as possible).
Sponsored by: Cisco Systems, Inc.
(r225485). When setting an interface name to it, the following
configurations will be enabled:
1. "no_radr" is set to all IPv6 interfaces automatically.
2. "-no_radr accept_rtadv" will be set only for $ipv6_cpe_wanif. This is
done just before evaluating $ifconfig_IF_ipv6 in the rc.d scripts (this
means you can manually supersede this configuration if necessary).
3. The node will add RA-sending routers to the default router list
even if net.inet6.ip6.forwarding=1.
This mode is added to conform to RFC 6204 (a router which connects
the end-user network to a service provider network). To enable
packet forwarding, you still need to set ipv6_gateway_enable=YES.
Note that accepting router entries into the default router list when
packet forwarding capability and a routing daemon are enabled can
result in messing up the routing table. To minimize such unexpected
behaviors, "no_radr" is set on all interfaces but $ipv6_cpe_wanif.
Approved by: re (bz)
- A new per-interface knob IFF_ND6_NO_RADR and sysctl IPV6CTL_NO_RADR.
This controls if accepting a route in an RA message as the default route.
The default value for each interface can be set by net.inet6.ip6.no_radr.
The system wide default value is 0.
- A new sysctl: net.inet6.ip6.norbit_raif. This controls if setting R-bit in
NA on RA accepting interfaces. The default is 0 (R-bit is set based on
net.inet6.ip6.forwarding).
Background:
IPv6 host/router model suggests a router sends an RA and a host accepts it for
router discovery. Because of that, KAME implementation does not allow
accepting RAs when net.inet6.ip6.forwarding=1. Accepting RAs on a router can
make the routing table confused since it can change the default router
unintentionally.
However, in practice there are cases where we cannot distinguish a host from
a router clearly. For example, a customer edge router often works as a host
against the ISP, and as a router against the LAN at the same time. Another
example is a complex network configurations like an L2TP tunnel for IPv6
connection to Internet over an Ethernet link with another native IPv6 subnet.
In this case, the physical interface for the native IPv6 subnet works as a
host, and the pseudo-interface for L2TP works as the default IP forwarding
route.
Problem:
Disabling processing RA messages when net.inet6.ip6.forwarding=1 and
accepting them when net.inet6.ip6.forward=0 cause the following practical
issues:
- A router cannot perform SLAAC. It becomes a problem if a box has
multiple interfaces and you want to use SLAAC on some of them, for
example. A customer edge router for IPv6 Internet access service
using an IPv6-over-IPv6 tunnel sometimes needs SLAAC on the
physical interface for administration purpose; updating firmware
and so on (link-local addresses can be used there, but GUAs by
SLAAC are often used for scalability).
- When a host has multiple IPv6 interfaces and it receives multiple RAs on
them, controlling the default route is difficult. Router preferences
defined in RFC 4191 works only when the routers on the links are
under your control.
Details of Implementation Changes:
Router Advertisement messages will be accepted even when
net.inet6.ip6.forwarding=1. More precisely, the conditions are as
follow:
(ACCEPT_RTADV && !NO_RADR && !ip6.forwarding)
=> Normal RA processing on that interface. (as IPv6 host)
(ACCEPT_RTADV && (NO_RADR || ip6.forwarding))
=> Accept RA but add the router to the defroute list with
rtlifetime=0 unconditionally. This effectively prevents
from setting the received router address as the box's
default route.
(!ACCEPT_RTADV)
=> No RA processing on that interface.
ACCEPT_RTADV and NO_RADR are per-interface knob. In short, all interface
are classified as "RA-accepting" or not. An RA-accepting interface always
processes RA messages regardless of ip6.forwarding. The difference caused by
NO_RADR or ip6.forwarding is whether the RA source address is considered as
the default router or not.
R-bit in NA on the RA accepting interfaces is set based on
net.inet6.ip6.forwarding. While RFC 6204 W-1 rule (for CPE case) suggests
a router should disable the R-bit completely even when the box has
net.inet6.ip6.forwarding=1, I believe there is no technical reason with
doing so. This behavior can be set by a new sysctl net.inet6.ip6.norbit_raif
(the default is 0).
Usage:
# ifconfig fxp0 inet6 accept_rtadv
=> accept RA on fxp0
# ifconfig fxp0 inet6 accept_rtadv no_radr
=> accept RA on fxp0 but ignore default route information in it.
# sysctl net.inet6.ip6.norbit_no_radr=1
=> R-bit in NAs on RA accepting interfaces will always be set to 0.
In protosw we define pr_protocol as short, while on the wire
it is an uint8_t. That way we can have "internal" protocols
like DIVERT, SEND or gaps for modules (PROTO_SPACER).
Switch ipproto_{un,}register to accept a short protocol number(*)
and do an upfront check for valid boundries. With this we
also consistently report EPROTONOSUPPORT for out of bounds
protocols, as we did for proto == 0. This allows a caller
to not error for this case, which is especially important
if we want to automatically call these from domain handling.
(*) the functions have been without any in-tree consumer
since the initial introducation, so this is considered save.
Implement ip6proto_{un,}register() similarly to their legacy IP
counter parts to allow modules to hook up dynamically.
Reviewed by: philip, will
MFC after: 1 week
"Whitspace" churn after the VIMAGE/VNET whirls.
Remove the need for some "init" functions within the network
stack, like pim6_init(), icmp_init() or significantly shorten
others like ip6_init() and nd6_init(), using static initialization
again where possible and formerly missed.
Move (most) variables back to the place they used to be before the
container structs and VIMAGE_GLOABLS (before r185088) and try to
reduce the diff to stable/7 and earlier as good as possible,
to help out-of-tree consumers to update from 6.x or 7.x to 8 or 9.
This also removes some header file pollution for putatively
static global variables.
Revert VIMAGE specific changes in ipfilter::ip_auth.c, that are
no longer needed.
Reviewed by: jhb
Discussed with: rwatson
Sponsored by: The FreeBSD Foundation
Sponsored by: CK Software GmbH
MFC after: 6 days
packet filters. ALso allows ipfw to be enabled on on ejail and disabled
on another. In 8.0 it's a global setting.
Sitting aroung in tree waiting to commit for: 2 months
MFC after: 2 months