for better structure.
Much of this is related to <sys/clock.h>, which should really have
been called <sys/calendar.h>, but unless and until we need the name,
the repocopy can wait.
In general the kernel does not know about minutes, hours, days,
timezones, daylight savings time, leap-years and such. All that
is theoretically a matter for userland only.
Parts of kernel code does however care: badly designed filesystems
store timestamps in local time and RTC chips almost universally
track time in a YY-MM-DD HH:MM:SS format, and sometimes in local
timezone instead of UTC. For this we have <sys/clock.h>
<sys/time.h> on the other hand, deals with time_t, timeval, timespec
and so on. These know only seconds and fractions thereof.
Move inittodr() and resettodr() prototypes to <sys/time.h>.
Retain the names as it is one of the few surviving PDP/VAX references.
Move startrtclock() to <machine/clock.h> on relevant platforms, it
is a MD call between machdep.c/clock.c. Remove references to it
elsewhere.
Remove a lot of unnecessary <sys/clock.h> includes.
Move the machdep.disable_rtc_set sysctl to subr_rtc.c where it belongs.
XXX: should be kern.disable_rtc_set really, it's not MD.
Make clock_if.m and subr_rtc.c standard on i386
Add hints for "atrtc" driver, for non-PnP, non-ACPI systems.
NB: Make sure to install GENERIC.hints into /boot/device.hints in these!
Nuke MD inittodr(), resettodr() functions.
Don't attach to PHP0B00 in the "attimer" dummy driver any more, and remove
comments that no longer apply for that reason.
Add new "atrtc" device driver, which handles IBM PC AT Real Time
Clock compatible devices using subr_rtc and clock_if.
This driver is not entirely clean: other code still fondles the
hardware to get a statclock interrupt on non-ACPI timer systems.
Wrap some overly long lines.
After it has settled in -current, this will be ported to amd64.
Technically this is MFC'able, but I fail to see a good reason.
frequency generation and what frequency the generated was anyones
guess.
In general the 32.768kHz RTC clock x-tal was the best, because that
was a regular wrist-watch Xtal, whereas the X-tal generating the
ISA bus frequency was much lower quality, often costing as much as
several cents a piece, so it made good sense to check the ISA bus
frequency against the RTC clock.
The other relevant property of those machines, is that they
typically had no more than 16MB RAM.
These days, CPU chips croak if their clocks are not tightly within
specs and all necessary frequencies are derived from the master
crystal by means if PLL's.
Considering that it takes on average 1.5 second to calibrate the
frequency of the i8254 counter, that more likely than not, we will
not actually use the result of the calibration, and as the final
clincher, we seldom use the i8254 for anything besides BEL in
syscons anyway, it has become time to drop the calibration code.
If you need to tell the system what frequency your i8254 runs,
you can do so from the loader using hw.i8254.freq or using the
sysctl kern.timecounter.tc.i8254.frequency.
these days, so de-generalize the acquire_timer/release_timer api
to just deal with speakers.
The new (optional) MD functions are:
timer_spkr_acquire()
timer_spkr_release()
and
timer_spkr_setfreq()
the last of which configures the timer to generate a tone of a given
frequency, in Hz instead of 1/1193182th of seconds.
Drop entirely timer2 on pc98, it is not used anywhere at all.
Move sysbeep() to kern/tty_cons.c and use the timer_spkr*() if
they exist, and do nothing otherwise.
Remove prototypes and empty acquire-/release-timer() and sysbeep()
functions from the non-beeping archs.
This eliminate the need for the speaker driver to know about
i8254frequency at all. In theory this makes the speaker driver MI,
contingent on the timer_spkr_*() functions existing but the driver
does not know this yet and still attaches to the ISA bus.
Syscons is more tricky, in one function, sc_tone(), it knows the hz
and things are just fine.
In the other function, sc_bell() it seems to get the period from
the KDMKTONE ioctl in terms if 1/1193182th second, so we hardcode
the 1193182 and leave it at that. It's probably not important.
Change a few other sysbeep() uses which obviously knew that the
argument was in terms of i8254 frequency, and leave alone those
that look like people thought sysbeep() took frequency in hertz.
This eliminates the knowledge of i8254_freq from all but the actual
clock.c code and the prof_machdep.c on amd64 and i386, where I think
it would be smart to ask for help from the timecounters anyway [TBD].
lock in the 8259A drivers as these drivers are only used on UP systems.
This slightly reduces the penalty of an SMP kernel (such as GENERIC) on
a UP x86 machine.
after each SYSINIT() macro invocation. This makes a number of
lightweight C parsers much happier with the FreeBSD kernel
source, including cflow's prcc and lxr.
MFC after: 1 month
Discussed with: imp, rink
since the branch caches on at least Athlon XP through Athlon 64 CPU's
don't understand such instructions and guarantee a cache miss taking
at least 10 cycles. Use the documented workaround "ret $0" instead
("nop; ret" also works, but "ret $0" is probably faster on old CPUs).
Normal code (even asm code) doesn't branch to "ret", since there is
usually some cleanup to do, but the __mcount, .mcount and .mexitcount
entry points were optimized too well to have the minimum number of
instructions (3 instructions each if profiling is not enabled) and
they did this. I didn't see a significant number of cache misses for
.mexitcount, but for the shared "ret" for __mcount and .mcount I
observed cache misses costing 26 cycles each. For a send(2) syscall
that makes about 70 function calls, the cost of these cache misses
alone increased the syscall time from about 4000 cycles to about 7000
cycles. 4000 is for a profiling (GUPROF) kernel with profiling disabled;
after this fix, configuring profiling only costs about 600 cycles in the
4000, which is consistent with almost perfect branch prediction in the
mcounting calls.
unused except to obfuscate disassemblies. -mprofiler-epilogue is
currently with gcc-4 (it does too little), but -finstrument-functions
is broken in a different way (it does too much).
amd64 version: meger whitespace fixes from i386 version.
refactored it to be a generic device.
Instead of being part of the standard kernel, there is now a 'nvram' device
for i386/amd64. It is in DEFAULTS like io and mem, and can be turned off
with 'nodevice nvram'. This matches the previous behavior when it was
first committed.
When any PnP device exists, isa_release_resource() is called with no
activated resource. So a bushandle is not allocated yet.
Approved by: re (kensmith)
day of week field correctly, or they remember bad values that are
written into the day of week field. For this reason, ignore the day
of week field when reading the clock on i386 rather than bailing if
it is set incorrectly.
Problems were seen on a number of platforms, including VMWare, qemu,
EPIA ME6000, Epox-3PTA and ABIT-SL30T.
This is a slightly different fix to that proposed by Ted in his PR,
but the same basic idea.
PR: 111117
Submitted by: Ted Faber <faber@lunabase.org>
Approved by: re (rwatson)
MFC after: 3 weeks
print a one line error message. Add some comments on not being able to
trust the day of week field (I'll act on these comments in a follow up
commit).
Approved by: re
MFC after: 3 weeks
114 bytes of cmos ram in the PC clock chip. The big difference between
this and the Linux version is that we do not recalculate the checksums
for bytes 16..31.
We use this at work when cloning identical machines - we can copy the
bios settings as well. Reading /dev/nvram gives 114 bytes of data but
you can seek/read/write whichever bytes you like.
Yes, this is a "foot, gun, fire!" type of device.
- Use thread_lock() rather than sched_lock for per-thread scheduling
sychronization.
- Use the per-process spinlock rather than the sched_lock for per-process
scheduling synchronization.
Tested by: kris, current@
Tested on: i386, amd64, ULE, 4BSD, libthr, libkse, PREEMPTION, etc.
Discussed with: kris, attilio, kmacy, jhb, julian, bde (small parts each)
sysctl_handle_int is not sizeof the int type you want to export.
The type must always be an int or an unsigned int.
Remove the instances where a sizeof(variable) is passed to stop
people accidently cut and pasting these examples.
In a few places this was sysctl_handle_int was being used on 64 bit
types, which would truncate the value to be exported. In these
cases use sysctl_handle_quad to export them and change the format
to Q so that sysctl(1) can still print them.
- Split the intr_table_lock into an sx lock used for most things, and a
spin lock to protect intrcnt_index. Originally I had this as a spin lock
so interrupt code could use it to lookup sources. However, we don't
actually do that because it would add a lot of overhead to interrupts,
and if we ever do support removing interrupt sources, we can use other
means to safely do so w/o locking in the interrupt handling code.
- Replace is_enabled (boolean) with is_handlers (a count of handlers) to
determine if a source is enabled or not. This allows us to notice when
a source is no longer in use. When that happens, we now invoke a new
PIC method (pic_disable_intr()) to inform the PIC driver that the
source is no longer in use. The I/O APIC driver frees the APIC IDT
vector when this happens. The MSI driver no longer needs to have a
hack to clear is_enabled during msi_alloc() and msix_alloc() as a result
of this change as well.
- Add an apic_disable_vector() to reset an IDT vector back to Xrsvd to
complement apic_enable_vector() and use it in the I/O APIC and MSI code
when freeing an IDT vector.
- Add a new nexus hook: nexus_add_irq() to ask the nexus driver to add an
IRQ to its irq_rman. The MSI code uses this when it creates new
interrupt sources to let the nexus know about newly valid IRQs.
Previously the msi_alloc() and msix_alloc() passed some extra stuff
back to the nexus methods which then added the IRQs. This approach is
a bit cleaner.
- Change the MSI sx lock to a mutex. If we need to create new sources,
drop the lock, create the required number of sources, then get the lock
and try the allocation again.
cpufreq_pre_change is called before the change, giving each driver a chance
to revoke the change. cpufreq_post_change provides the results of the
change (success or failure). cpufreq_levels_changed gives the unit number
of the cpufreq device whose number of available levels has changed. Hook
in all the drivers I could find that needed it.
* TSC: update TSC frequency value. When the available levels change, take the
highest possible level and notify the timecounter set_cputicker() of that
freq. This gets rid of the "calcru: runtime went backwards" messages.
* identcpu: updates the sysctl hw.clockrate value
* Profiling: if profiling is active when the clock changes, let the user
know the results may be inaccurate.
Reviewed by: bde, phk
MFC after: 1 month
RTC state, then it may clobber the RTC index register, so the index
register must be restored before using it to restore control registers
in rtc_restore().
The following problems remain:
- rtc_restore() is only called if pmtimer is configured. Buggy
suspend/resumes are more likely to clobber the index register than
a control register, so pmtimer is more needed than it used to be.
- pmtimer doesn't exist for amd64.
- Restoring of the RTC state may race with rtcintr(). If an RTC
interrupt is handled before the state is restored, then rtcin(RTC_INTR)
in rtcintr() may read from the wrong register, so rtcintr() may spin
forever. This may be mitigated by the most common state clobbering
being to turn off RTC interrupts.
used by clock code, so don't export it to the world for machdep.c to
initialize. There is a minor problem initializing it before it is
used, since although clock initialization is split up so that parts
of it can be done early, the first part was never done early enough
to actually work. Split it up a bit more and do the first part as
late as possible to document the necessary order. The functions that
implement the split are still bogusly exported.
Cleaned up initialization of the i8254 clock hardware using the new
split. Actually initialize it early enough, and don't work around it
not being initialized in DELAY() when DELAY() is called early for
initialization of some console drivers.
This unfortunately moves a little more code before the early debugger
breakpoint so that it is harder to debug. The ordering of console and
related initialization is delicate because we want to do as little as
possible before the breakpoint, but must initialize a console.
passed by value (trap frames) as if they were in fact being passed by
reference. For better or worse, this incorrect behaviour is no longer
present in gcc 4.1. In this patch I convert all trapframe arguments to
be explicitly pass by reference. I also remove vm86_initflags, pushing
the very little work that it actually does up into vm86_prepcall.
Reviewed by: kan
Tested by: kan
and by only delaying when an RTC register is written to. The delay
after writing to the data register is now not just a workaround.
This reduces the number of ISA accesses in the usual case from 4 to
1. The usual case is 2 rtcin()'s for each RTC interrupt. The index
register is almost always RTC_INTR for this. The 3 extra ISA accesses
were 1 for writing the index and 2 for delays. Some delays are needed
in theory, but in practice they now just slow down slow accesses some
more since almost eveyone including us does them wrong so modern systems
enforce sufficient delays in hardware. I used to have the delays ifdefed
out, but with the index register optimization the delays are rarely
executed so the old magic ones can be kept or even implemented non-
magically without significant cost.
Optimizing RTC interrupt handling is more interesting than it used to
be because RTC interrupts are currently needed to fix the more efficient
apic timer interrupts on some systems. apic_timer_hz is normally 2000
so the RTC interrupt rate needs to be 2048 to keep the apic timer
firing on such systems. Without these changes, each RTC interrupt
normally took 10 ISA accesses (2 PIC accesses and 2 sets of 4 RTC
accesses). Each ISA access takes 1-1.5uS so 10 of then at 2048 Hz
takes 2-3% of a CPU. Now 4 of them take 0.8-1.2% of a CPU.
not completely decided at config time. Just don't default to using
the TSC if there are multiple active CPUs. Also, don't default to
using the TSC if it is broken. SMP ifdefs are still used to disallow
using perfmon since perfmon is always broken if SMP is just configured.
This only helps much for SMP kernels running on 1 CPU. The overheads
for using the i8254 cputime clock were a bit too high on 486/33's, and
now on multi-GHz CPUs they are usually in the 99-99.9% range. Switching
from the old default of an i8254 clock to the TSC works poorly because
the overheads are not recalibrated.
Use the same condition for declaring perfmon stuff as for using it.
was only used in the GUPROF case, so the messes to get its i386 prerequisites
included shouldn't have been needed.
Fixed some style bugs. Quote #error contents, and don't repeat an #error
directive on amd64.
this used to be slightly cleaner than using ifdefs in a few places to
support both a.out and elf, but using it now just causes messes and
unportabilities. It seems to be impossible to implement the elf
HIDENAME() portably in cpp (since token pasting of "." and <name> is
invalid).
*/prof_machdep.c:
- Removed all uses of CNAME(). CNAME() is easy enough to use in pure
asm code, but using it in inline asm requires messy quoting. The
core pure asm code has been hacked on more and all uses of CNAME() in
it have already gone away. Just assume the elf convention here too.
- Removed now-uneeded include of <machine/asmacros.h>.
- Removed the workaround for a namespace conflict with this include.
profiling is configured but high resolution profiling is not configured.
Only functions in *.[Ss] called the stub, so efficiency was not
significantly affected.
(PICs) rather than interrupt sources. This allows interrupt controllers
with no interrupt pics (such as the 8259As when APIC is in use) to
participate in suspend/resume.
- Always register the 8259A PICs even if we don't use any of their pins.
- Explicitly reset the 8259As on resume on amd64 if 'device atpic' isn't
included.
- Add a "dummy" PIC for the local APIC on the BSP to reset the local APIC
on resume. This gets suspend/resume working with APIC on UP systems.
SMP still needs more work to bring the APs back to life.
The MFC after is tentative.
Tested by: anholt (i386)
Submitted by: Andrea Bittau <a.bittau at cs.ucl.ac.uk> (3)
MFC after: 1 week
Split subr_clock.c in two parts (by repo-copy):
subr_clock.c contains generic RTC and calendaric stuff. etc.
subr_rtc.c contains the newbus'ified RTC interface.
Centralize the machdep.{adjkerntz,disable_rtc_set,wall_cmos_clock}
sysctls and associated variables into subr_clock.c. They are
not machine dependent and we have generic code that relies on being
present so they are not even optional.
POSIX (susv3) requires this, but it is unclear what should be inherited,
duplicating whole 387 stack for new thread seems to be unnecessary and
dangerous. Revert to previous code, force a new thread to be started with
clean FP state.
earlier in cpu_setregs().
- If we know this CPU has a FPU via cpuid, then just assume the INT16
interface and make the npx device quiet to not clutter the dmesg. This
is true for all Pentium and later CPUs and even some of the later 486dx
CPUs.
Reviewed by: bde
Tested by: ps
MFC after: 1 week
- Throw out all of the logical APIC ID stuff. The Intel docs are somewhat
ambiguous, but it seems that the "flat" cluster model we are currently
using is only supported on Pentium and P6 family CPUs. The other
"hierarchy" cluster model that is supported on all Intel CPUs with
local APICs is severely underdocumented. For example, it's not clear
if the OS needs to glean the topology of the APIC hierarchy from
somewhere (neither ACPI nor MP Table include it) and setup the logical
clusters based on the physical hierarchy or not. Not only that, but on
certain Intel chipsets, even though there were 4 CPUs in a logical
cluster, all the interrupts were only sent to one CPU anyway.
- We now bind interrupts to individual CPUs using physical addressing via
the local APIC IDs. This code has also moved out of the ioapic PIC
driver and into the common interrupt source code so that it can be
shared with MSI interrupt sources since MSI is addressed to APICs the
same way that I/O APIC pins are.
- Interrupt source classes grow a new method pic_assign_cpu() to bind an
interrupt source to a specific local APIC ID.
- The SMP code now tells the interrupt code which CPUs are avaiable to
handle interrupts in a simpler and more intuitive manner. For one thing,
it means we could now choose to not route interrupts to HT cores if we
wanted to (this code is currently in place in fact, but under an #if 0
for now).
- For now we simply do static round-robin of IRQs to CPUs when the first
interrupt handler just as before, with the change that IRQs are now
bound to individual CPUs rather than groups of up to 4 CPUs.
- Because the IRQ to CPU mapping has now been moved up a layer, it would
be easier to manage this mapping from higher levels. For example, we
could allow drivers to specify a CPU affinity map for their interrupts,
or we could allow a userland tool to bind IRQs to specific CPUs.
The MFC is tentative, but I want to see if this fixes problems some folks
had with UP APIC kernels on 6.0 on SMP machines (an SMP kernel would work
fine, but a UP APIC kernel (such as GENERIC in RELENG_6) would lose
interrupts).
MFC after: 1 week