aic79xx.seq:
Convert the COMPLETE_DMA_SCB list to an "stailq". This allows us to
safely keep the SCB that is currently being DMA'ed back the host on
the head of the list while processing completions off of the bus. The
newly completed SCBs are appended to the tail of the queue. In the
past, we just dequeued the SCB that was in flight from the list, but
this could result in a lost completion should the host perform certain
types of error recovery that must cancel all in-flight SCB DMA operations.
Switch from using a 16bit completion entry, holding just the tag and the
completion valid bit, to a 64bit completion entry that also contains a
"status packet valid" indicator. This solves two problems:
o The SCB DMA engine on at least Rev B. silicon does not properly deal
with a PCI disconnect that occurs at a non-64bit aligned offset in the
chips "source buffer". When the transfer is resumed, the DMA engine
continues at the correct offset, but may wrap to the head of the buffer
causing duplicate completions to be reported to the host. By using a
completion buffer in host memory that is 64bit aligned and using 64bit
completion entries, such disconnects should only occur at aligned addresses.
This assumes that the host bridge will only disconnect on cache-line
boundaries and that cache-lines are multpiles of 64bits.
o By embedding the status information in the completion entry we can avoid
an extra memory reference to the HSCB for commands that complete without
error.
Use the comparison of a "host freeze count" and a "sequencer freeze count"
to allow the host to process most SCBs that complete with non-zero status
without having to clear critical sections. Instead the host can just pause the
sequencer, performs any necessary cleanup in the waiting for selection list,
increments its freeze count on the controller, and unpauses. This is only
possible because the sequencer defers completions of SCBs with bad status
until after all pending selections have completed. The sequencer then avoids
referencing any data structures the host may touch during completion of the
SCB until the freeze counts match.
aic79xx.c:
Change the strategy for allocating our sentinal HSCB for the QINFIFO. In
the past, this allocation was tacked onto the QOUTFIFO allocation. Now that
the qoutfifo has grown to accomodate larger completion entries, the old
approach will result in a 64byte allocation that costs an extra page of
coherent memory. We now do this extra allocation via ahd_alloc_scbs()
where the "unused space" can be used to allocate "normal" HSCBs.
In our packetized busfree handler, use the ENSELO bit to differentiate
between packetized and non-packetized unexpected busfree events that
occur just after selection, but before the sequencer has had the oportunity
to service the selection.
When cleaning out the waiting for selection list, use the SCSI mode
instead of the command channel mode. The SCB pointer in the command
channel mode may be referenced by the SCB dma engine even while the
sequencer is paused, whereas the SCSI mode SCB pointer is only accessed
by the sequencer.
Print the "complete on qfreeze" sequencer SCB completion list in
ahd_dump_card_state(). This list holds all SCB completions that are deferred
until a pending select-out qfreeze event has taken effect.
aic79xx.h:
Add definitions and structures to handle the new SCB completion scheme.
Add a controller flag that indicates if the controller is in HostRAID
mode.
aic79xx.reg:
Remove macros used for toggling from one data fifo mode to the other.
They have not been in use for some time.
Add scratch ram fields for our new qfreeze count scheme, converting
the complete dma list into an "stailq", and providing for the "complete
on qfreeze" SCB completion list. Some other fields were moved to retain
proper field alignment (alignment >= field size in bytes).
aic79xx.seq:
Add code to our idle loop to:
o Process deferred completions once a qfreeze event has taken full
effect.
o Thaw the queue once the sequencer and host qfreeze counts match.
Generate 64bit completion entries passing the SCB_SGPTR field as the
"good status" indicator. The first bit in this field is only set if
we have a valid status packet to send to the host.
Convert the COMPLETE_DMA_SCB list to an "stailq".
When using "setjmp" to register an idle loop handler, do not combine
the "ret" with the block move to pop the stack address in the same
instruction. At least on the A, this results in a return to the setjmp
caller, not to the new address at the top of the stack. Since we want
the latter (we want the newly registered handler to only be invoked from
the idle loop), we must use a separate ret instruction.
Add a few missing critical sections.
Close a race condition that can occur on Rev A. silicon. If both FIFOs
happen to be allocated before the sequencer has a chance to service the
FIFO that was allocated first, we must take special care to service the
FIFO that is not active on the SCSI bus first. This guarantees that a
FIFO will be freed to handle any snapshot requests for the FIFO that is
still on the bus. Chosing the incorrect FIFO will result in deadlock.
Update comments.
aic79xx_inline.h
Correct the offset calculation for the syncing of our qoutfifo.
Update ahd_check_cmdcmpltqueues() for the larger completion entries.
aic79xx_pci.c:
Attach to HostRAID controllers by default. In the future I may add a
sysctl to modify the behavior, but since FreeBSD does not have any
HostRAID drivers, failing to attach just results in more email and
bug reports for the author.
MFC After: 1week
that Asus provides on its CDs has both a MiniportSend() routine
and a MiniportSendPackets() function. The Microsoft NDIS docs say
that if a driver has both, only the MiniportSendPackets() routine
will be used. Although I think I implemented the support correctly,
calling the MiniportSend() routine seems to result in no packets going
out on the air, even though no error status is returned. The
MiniportSendPackets() function does work though, so at least in
this case it doesn't matter.
In if_ndis.c:ndis_getstate_80211(), if ndis_get_assoc() returns
an error, don't bother trying to obtain any other state since the
calls may fail, or worse cause the underlying driver to crash.
(The above two changes make the Asus-supplied Centrino work.)
Also, when calling the OID_802_11_CONFIGURATION OID, remember
to initialize the structure lengths correctly.
In subr_ndis.c:ndis_open_file(), set the current working directory
to rootvnode if we're in a thread that doesn't have a current
working directory set.
it is still above the critical temperature on the next poll cycle. This
is a 10 second advance notice by default. Document the private
(non-standard) notify we will be using with devd(8).
the system. Also, decrease the poll interval to 10 seconds from 30
seconds. This is needed because some systems will report an invalid high
temperature for one poll cycle. It is suspected this is due to the
embedded controller timing out. A typical value is 138C for one cycle on a
system that is otherwise 65C. This prevents the system from prematurely
shutting down after one invalid reading. It will still shut down after 30
seconds of high temperature, which is the same as previous default
behavior.
Tested by: Scott Lambert <lambert AT lambertfam.org>
is for an 802.11 device or not. At least one driver I have does not
support the OID_802_11_NETWORK_TYPES_SUPPORTED OID.
Also, for now, don't do anything special in the ndis_suspend() method.
I originally wanted to shut down the NIC but leave the IFF_UP flag alone
since technically the interface is meant to remain up, but an interrupt
may be delivered to the ISR on suspend, and if this happens while the
NIC is halted, we will crash, since none of the miniport driver methods
will function.
This needs to be dealt with properly later, but for now this prevents
a panic, and the resume method properly re-inits the NIC.
interrupt handler so that no locks are needed, and schedules the
command completion routine with a taskqueue_fast. This also corrects the
locking in the command thread and removes the need for operation flags.
Simple load tests show that this is now considerably faster than FreeBSD 4.x
in the SMP case when multiple i/o tasks are running.
won't associate in BSS mode if you use AUTHMODE_SHARED. I probably don't
understand enough to know when SHARED should be used vs. OPEN or WPA.
For now, go back to what works.
bit for this being the last CTIO2. It didn't matter since it really was the
last CTIO2 and the resources recycled, but still....
Add in CTIO3 define for future DAC work.
instead of taskqueue_swi. This shaves from 1 to 10% of the overhead.
Overhaul the locking once more, there was a few possible races that
are now closed.
panic() so that the buffer overflow just beyond this point is always
caught, even when the code is not compiled with INVARIANTS.
Change chn_setblocksize() buffer reallocation code to attempt to avoid
the feed_vchan16() buffer overflow by attempting to always keep the
bufsoft buffer at least as large as the bufhard buffer.
Print a diagnositic message
Danger! %s bufsoft size increasing from %d to %d after CHANNEL_SETBLOCKSIZE()
if our best attempts fail. If feed_vchan16() were to be called by
the interrupt handler while locks are dropped in chn_setblocksize()
to increase the size bufsoft to match the size of bufhard, the panic()
code in feed_vchan16() will be triggered. If the diagnostic message
is printed, it is a warning that a panic is possible if the system
were to see events in an "unlucky" order.
Change the locking code to avoid the need for MTX_RECURSIVE mutexes.
Add the MTX_DUPOK option to the channel mutexes and change the locking
sequence to always lock the parent channel before its children to avoid
the possibility of deadlock.
Actually implement locking assertions for the channel mutexes and fix
the problems found by the resulting assertion violations.
Clean up the locking code in dsp_ioctl().
Allocate the channel buffers using the malloc() M_WAITOK option instead
of M_NOWAIT so that buffer allocation won't fail. Drop locks across
the malloc() calls.
Add/modify KASSERTS() in attempt to detect problems early.
Abuse layering by adding a pointer to the snd_dbuf structure that points
back to the pcm_channel that owns it. This allows sndbuf_resize() to do
proper locking without having to change the its API, which is used by
the hardware drivers.
Don't dereference a NULL pointer when setting hw.snd.maxautovchans
if a hardware driver is not loaded. Noticed by Ryan Sommers
<ryans at gamersimpact.com>.
Tested by: Stefan Ehmann <shoesoft AT gmx.net>
Tested by: matk (Mathew Kanner)
Tested by: Gordon Bergling <gbergling AT 0xfce3.net>
kbd_attach() is called kbd[0-9]+, with a different unit number. This
makes it impossible to write a devd rule which will automatically
switch to a USB keyboard when one is attached, because there is no way
to guess the correct device node to pass to kbdcontrol.
Therefore, change kbd_attach() to create a device node using the
keyboard device's real name (atkbd0, ukbd0...), and create the
kbd[0-9]+ node as an alias for backward compatibility.
on an SIOCSIFADDR (by way of brain damage in net80211).
Also, avoid trying to set NDIS_80211_AUTHMODE_AUTO since the Microsoft
documentation I have recommends not using it, and the Centrino driver
seems to dislike being told to use it.
device that doesn't exists. I'm using my discretion and
committing without mentor approval since Seigo is away.
Noticed by: Maxime Henrion <mux@freebsd.org>
For some very unclear reason this device contains a FTDI 8U232AM USB->COM
adapter, but reports different device id than original 8U232AM. At the same
time, it reports vendor id of FTDI.
Sponsored by: Porta Software Ltd
MFC after: 2 weeks
rid's and to deallocate resources if a failure occurs during attach. This
patch also fixes the driver to return failure if bus_alloc_resource() for
the IRQ fails rather than panic'ing on the next line by passing a NULL
resource to bus_setup_intr(). The other attachments already do all this.
Submitted by: Jun Su <csujun@263.net>