10019 Commits

Author SHA1 Message Date
John Baldwin
a54bb702d7 Restore the previous state after a FILL operation in properties_read()
rather than forcing the state to LOOK.  If we are in the middle of parsing
a line when we have to do a FILL we would have lost any token we were in
the middle of parsing and would have treated the next character as being
at the start of a new line instead.

PR:		kern/89181
Submitted by:	Antony Mawer gnats at mawer dot org
MFC after:	1 week
2005-11-28 16:30:16 +00:00
Bruce Evans
1dd21062e5 Rearranged the polynomial evaluation some more to reduce dependencies.
Instead of echoing the code in a comment, try to describe why we split
up the evaluation in a special way.

The new optimization is mostly to move the evaluation of w = z*z later
so that everything else (except z = x*x) doesn't have to wait for w.
On Athlons, FP multiplication has a latency of 4 cycles so this
optimization saves 4 cycles per call provided no new dependencies are
introduced.  Tweaking the other terms in to reduce dependencies saves
a couple more cycles in some cases (more on AXP than on A64; up to 8
cycles out of 56 altogether in some cases).  The previous version had
a similar optimization for s = z*x.  Special optimizations like these
probably have a larger effect than the simple 2-way vectorization
permitted (but not activated by gcc) in the old version, since 2-way
vectorization is not enough and the polynomial's degree is so small
in the float case that non-vectorizable dependencies dominate.

On an AXP, tanf() on uniformly distributed args in [-2pi, 2pi] now
takes 34-55 cycles (was 39-59 cycles).
2005-11-28 11:46:20 +00:00
Bruce Evans
671448d87e Fixed about 50 million errors of infinity ulps and about 3 million errors
of between 1.0 and 1.8509 ulps for lgammaf(x) with x between -2**-21 and
-2**-70.

As usual, the cutoff for tiny args was not correctly translated to
float precision.  It was 2**-70 but 2**-21 works.  Not as usual, having
a too-small threshold was worse than a pessimization.  It was just a
pessimization for (positive) args between 2**-70 and 2**-21, but for
the first ~50 million (negative) args below -2**-70, the general code
overflowed and gave a result of infinity instead of correct (finite)
results near 70*log(2).  For the remaining ~361 million negative args
above -2**21, the general code gave almost-acceptable errors (lgamma[f]()
is not very accurate in general) but the pessimization was larger than
for misclassified tiny positive args.

Now the max error for lgammaf(x) with |x| < 2**-21 is 0.7885 ulps, and
speed and accuracy are almost the same for positive and negative args
in this range.  The maximum error overall is still infinity ulps.

A cutoff of 2**-70 is probably wastefully small for the double precision
case.  Smaller cutoffs can be used to reduce the max error to nearly
0.5 ulps for tiny args, but this is useless since the general algrorithm
for nearly-tiny args is not nearly that accurate -- it has a max error of
about 1 ulp.
2005-11-28 08:32:15 +00:00
Bruce Evans
0bea84b2d4 Exploit skew-symmetry to avoid an operation: -sin(x-A) = sin(A-x). This
gives a tiny but hopefully always free optimization in the 2 quadrants
to which it applies.  On Athlons, it reduces maximum latency by 4 cycles
in these quadrants but has usually has a smaller effect on total time
(typically ~2 cycles (~5%), but sometimes 8 cycles when the compiler
generates poor code).
2005-11-28 06:15:10 +00:00
Bruce Evans
35ae347641 Try to use the "proximity" (~) operator consistently in comments
(x ~<= a, not x <= ~a).  This got messed up in some places when the
comments were moved from e_rem_pio2f.c.

Added my (non-)copyright.
2005-11-28 05:46:13 +00:00
Bruce Evans
960d3da0f0 Changed spelling of the request-to-inline macro name to match the change
of the function name.

Added my (non-)copyright.

In k_tanf.c, added the first set of redundant parentheses to control
grouping which was claimed to be added in the previous commit.
2005-11-28 05:35:32 +00:00
Bruce Evans
59aad933ab Use only double precision for "kernel" cosf and sinf (except for
returning float).  The functions are renamed from __kernel_{cos,sin}f()
to __kernel_{cos,sin}df() so that misuses of them will cause link errors
and not crashes.

This version is an almost-routine translation with no special optimizations
for accuracy or efficiency.  The not-quite-routine part is that in
__kernel_cosf(), regenerating the minimax polynomial with double
precision coefficients gives a coefficient for the x**2 term that is
not quite -0.5, so the literal 0.5 in the code and the related `hz'
variable need to be modified; also, the special code for reducing the
error in 1.0-x**2*0.5 is no longer needed, so it is convenient to
adjust all the logic for the x**2 term a little.  Note that without
extra precision, it would be very bad to use a coefficient of other
than -0.5 for the x**2 term -- the old version depends on multiplication
by -0.5 being infinitely precise so as not to need even more special
code for reducing the error in 1-x**2*0.5.

This gives an unimportant increase in accuracy, from ~0.8 to ~0.501
ulps.  Almost all of the error is from the final rounding step, since
the choice of the minimax polynomials so that their contribution to the
error is a bit less than 0.5 ulps just happens to give contributions that
are significantly less (~.001 ulps).

An Athlons, for uniformly distributed args in [-2pi, 2pi], this gives
overall speed increases in the 10-20% range, despite giving a speed
decrease of typically 19% (from 31 cycles up to 37) for sinf() on args
in [-pi/4, pi/4].
2005-11-28 04:58:57 +00:00
Tim Kientzle
55be5837f8 Portability: Remove AC_CHECK_MALLOC from configure.ac.in.
libarchive doesn't make malloc(0) requests, so the autoconf
checks aren't needed and the autoconf workarounds for
broken malloc(0) just create problems.

Thanks to: Dan Nelson, who reports that this fixes libarchive on AIX 5.2
2005-11-27 03:16:46 +00:00
David Xu
8635f5a162 Implement following POSIX message queue interfaces:
mq_close, mq_getattr, mq_receive, mq_send.
2005-11-26 13:01:17 +00:00
Bruce Evans
833f0e1a4a Minor cleanups and optimizations:
- Remove dead code that I forgot to remove in the previous commit.

- Calculate the sum of the lower terms of the polynomial (divided by
  x**5) in a single expression (sum of odd terms) + (sum of even terms)
  with parentheses to control grouping.  This is clearer and happens to
  give better instruction scheduling for a tiny optimization (an
  average of about ~0.5 cycles/call on Athlons).

- Calculate the final sum in a single expression with parentheses to
  control grouping too.  Change the grouping from
  first_term + (second_term + sum_of_lower_terms) to
  (first_term + second_term) + sum_of_lower_terms.  Normally the first
  grouping must be used for accuracy, but extra precision makes any
  grouping give a correct result so we can group for efficiency.  This
  is a larger optimization (average 3-4 cycles/call or 5%).

- Use parentheses to indicate that the C order of left to right evaluation
  is what is wanted (for efficiency) in a multiplication too.

The old fdlibm code has several optimizations related to these.  2
involve doing an extra operation that can be done almost in parallel
on some superscalar machines but are pessimizations on sequential
machines.  Others involve statement ordering or expression grouping.
All of these except the ordering for the combining the sums of the odd
and even terms seem to be ideal for Athlons, but parallelism is still
limited so all of these optimizations combined together with the ones
in this commit save only ~6-8 cycles (~10%).

On an AXP, tanf() on uniformly distributed args in [-2pi, 2pi] now
takes 39-59 cycles.  I don't know of any more optimizations for tanf()
short of writing it all in asm with very MD instruction scheduling.
Hardware fsin takes 122-138 cycles.  Most of the optimizations for
tanf() don't work very well for tan[l]().  fdlibm tan() now takes
145-365 cycles.
2005-11-24 13:48:40 +00:00
Ruslan Ermilov
877205d1d4 Fix prototype. 2005-11-24 11:29:11 +00:00
Ruslan Ermilov
4226a8bf6f Fix prototypes. 2005-11-24 11:26:36 +00:00
Ruslan Ermilov
94f5f5df3d Fix prototypes. 2005-11-24 11:14:06 +00:00
Ruslan Ermilov
3a14548604 Fix prototypes. 2005-11-24 10:54:47 +00:00
Ruslan Ermilov
70b0774919 Fix prototype. 2005-11-24 10:43:35 +00:00
Ruslan Ermilov
41792fb59f Fix prototype. 2005-11-24 10:32:39 +00:00
Ruslan Ermilov
639d850061 Fix prototypes. 2005-11-24 10:30:44 +00:00
Ruslan Ermilov
de599f05ea Fix prototypes. 2005-11-24 10:06:05 +00:00
Joel Dahl
19797b2256 s/5.5/6.0/ in HISTORY section.
Discussed with:	ru
2005-11-24 09:25:10 +00:00
Ruslan Ermilov
47be132478 Make SYNOPSIS compile.
Attn peter@: this manpage wasn't synced with your code changes.
2005-11-24 07:48:19 +00:00
Ruslan Ermilov
93f0f0427b Fix prototypes.
Attn davidxu@: most likely, the description should also be tweaked
after your undocumented changes that changed these prototypes.
2005-11-24 07:33:35 +00:00
Ruslan Ermilov
7062693e56 Fix prototypes. 2005-11-24 07:12:01 +00:00
Ruslan Ermilov
6eee826901 Keep up with const poisoning in uuid.h,v 1.3. 2005-11-24 07:04:20 +00:00
Ruslan Ermilov
36c71f6ac1 Fix prototype. 2005-11-24 06:56:21 +00:00
Bruce Evans
16638b5585 Optimized by eliminating the special case for 0.67434 <= |x| < pi/4.
A single polynomial approximation for tan(x) works in infinite precision
up to |x| < pi/2, but in finite precision, to restrict the accumulated
roundoff error to < 1 ulp, |x| must be restricted to less than about
sqrt(0.5/((1.5+1.5)/3)) ~= 0.707.  We restricted it a bit more to
give a safety margin including some slop for optimizations.  Now that
we use double precision for the calculations, the accumulated roundoff
error is in double-precision ulps so it can easily be made almost 2**29
times smaller than a single-precision ulp.  Near x = pi/4 its maximum
is about 0.5+(1.5+1.5)*x**2/3 ~= 1.117 double-precision ulps.

The minimax polynomial needs to be different to work for the larger
interval.  I didn't increase its degree the old degree is just large
enough to keep the final error less than 1 ulp and increasing the
degree would be a pessimization.  The maximum error is now ~0.80
ulps instead of ~0.53 ulps.

The speedup from this optimization for uniformly distributed args in
[-2pi, 2pi] is 28-43% on athlons, depending on how badly gcc selected
and scheduled the instructions in the old version.  The old version
has some int-to-float conversions that are apparently difficult to schedule
well, but gcc-3.3 somehow did everything ~10 cycles or ~10% faster than
gcc-3.4, with the difference especially large on AXPs.  On A64s, the
problem seems to be related to documented penalties for moving single
precision data to undead xmm registers.  With this version, the speed
is cycles is almost independent of the athlon and gcc version despite
the large differences in instruction selection to use the FPU on AXPs
and SSE on A64s.
2005-11-24 02:04:26 +00:00
Ruslan Ermilov
4ca0505435 Fix prototype. 2005-11-23 20:34:37 +00:00
Ruslan Ermilov
8b79908889 Fix prototype. 2005-11-23 20:26:58 +00:00
Ruslan Ermilov
79be508c8f Fix prototypes. 2005-11-23 16:44:23 +00:00
Ruslan Ermilov
8ae7a845d5 There's no longer^Wyet <sys/capability.h>. 2005-11-23 16:24:39 +00:00
Ruslan Ermilov
49e5b98f5a Fix inet6_opt_get_val() prototype. 2005-11-23 16:07:54 +00:00
Ruslan Ermilov
5306fb2d0c Make SYNOPSIS compile. 2005-11-23 15:55:38 +00:00
Ruslan Ermilov
b0faeb2d42 Make SYNOPSIS compile after imp@'s changes. 2005-11-23 15:44:42 +00:00
Ruslan Ermilov
16a97b8591 Make SYNOPSIS compile. 2005-11-23 15:41:36 +00:00
Bruce Evans
94a5f9be99 Use only double precision for "kernel" tanf (except for returning float).
This is a minor interface change.  The function is renamed from
__kernel_tanf() to __kernel_tandf() so that misues of it will cause
link errors and not crashes.

This version is a routine translation with no special optimizations
for accuracy or efficiency.  It gives an unimportant increase in
accuracy, from ~0.9 ulps to 0.5285 ulps.  Almost all of the error is
from the minimax polynomial (~0.03 ulps and the final rounding step
(< 0.5 ulps).  It gives strange differences in efficiency in the -5
to +10% range, with -O1 fairly consistently becoming faster and -O2
slower on AXP and A64 with gcc-3.3 and gcc-3.4.
2005-11-23 14:27:56 +00:00
Ruslan Ermilov
c48648d2c1 Add missing includes. 2005-11-23 10:49:07 +00:00
Bruce Evans
01231dd04c Simplified setiing up args for __kernel_rem_pio2(). We already have x
with a 24-bit fraction, so we don't need a loop to split it into up to
3 terms with 24-bit fractions.
2005-11-23 03:03:09 +00:00
Bruce Evans
33f8f56e09 Quick fix for stack buffer overrun in rev.1.13. Oops. The prec == 1
arg to __kernel_rem_pio2() gives 53-bit (double) precision, not single
precision and/or the array dimension like I thought.  prec == 2 is
used in e_rem_pio2.c for double precision although it is documented
to be for 64-bit (extended) precision, and I just reduced it by 1
thinking that this would give the value suitable for 24-bit (float)
precision.  Reducing it 1 more to the documented value for float
precision doesn't actually work (it gives errors of ~0.75 ulps in the
reduced arg, but errors of much less than 0.5 ulps are needed; the bug
seems to be in kernel_rem_pio2.c).  Keep using a value 1 larger than
the documented value but supply an array large enough hold the extra
unused result from this.

The bug can also be fixed quickly by increasing init_jk[0] in
k_rem_pio2.c from 2 to 3.  This gives behaviour identical to using
prec == 1 except it doesn't create the extra result.  It isn't clear
how the precision bug affects higher precisions.  113-bit (quad) is
the largest precision, so there is no way to use a large precision
to fix it.
2005-11-23 02:06:06 +00:00
Ruslan Ermilov
33d6b9fbe6 Tidy up markup and fix two bugs. 2005-11-21 17:18:34 +00:00
Bruce Evans
4ce5120952 Mess up the "kernel" float trig function .c files with ifdefs so that
they can be #included in other .c files to give inline functions, and
use them to inline the functions in most callers (not in e_lgammaf_r.c).
__kernel_tanf() is too large and complicated for gcc to inline very well.

An athlons, this gives a speed increase under favourable pipeline
conditions of about 10% overall (larger for AXP, smaller for A64).
E.g., on AXP, sinf() on uniformly distributed args in [-2Pi, 2Pi]
now takes 30-56 cycles; it used to take 45-61 cycles; hardware fsin
takes 65-129.
2005-11-21 04:57:12 +00:00
Bruce Evans
58652034e8 Use double precision to simplify and optimize a long division.
On athlons, this gives a speedup of 10-20% for tanf() on uniformly
distributed args in [-2Pi, 2Pi].  (It only directly applies for 43%
of the args and gives a 16-20% speedup for these (more for AXP than
A64) and this gives an overall speedup of 10-12% which is all that it
should; however, it gives an overall speedup of 17-20% with gcc-3.3
on AXP-A64 by mysteriously effected cases where it isn't executed.)

I originally intended to use double precision for all internals of
float trig functions and will probably still do this, but benchmarking
showed that converting to double precision and back is a pessimization
in cases where a simple float precision calculation works, so it may
be optimal to switch precisions only when using extra precision is
much simpler.
2005-11-21 00:38:21 +00:00
Bruce Evans
23f6483e0a Restored a cleanup in rev.1.9 tthat was lost in rev.1.10. 2005-11-20 20:17:04 +00:00
Simon L. B. Nielsen
71dac3fb8f Do not explicitly state how many bytes an argument list can be in the
description of E2BIG, since it's now larger on some platforms.

MFC after:	3 days
2005-11-19 11:30:55 +00:00
Marcel Moolenaar
49fa07a087 o Include <sys/time.h>
o  Make this ILP32/LP64 clean: cast pointers to long
o  Code conditional upon DEBUG must also be conditional
   upon _LIBC_R_
2005-11-19 04:47:06 +00:00
Marcel Moolenaar
dc2e8ca41b o Include <string.h>
o  Make this ILP32/LP64 clean: cast pointers to long.
2005-11-19 04:45:15 +00:00
Marcel Moolenaar
40edb45e59 Fix typo: s/_LIBC_R/_LIBC_R_/ 2005-11-19 04:43:29 +00:00
Bruce Evans
8299eb7e3e Moved all the optimizations for |x| <= 9pi/2 from
__ieee754_rem_pio2f() to its 3 callers and manually inline them.

On Athlons, with favourable compiler flags and optimizations and
favourable pipeline conditions, this gives a speedup of 30-40 cycles
for cosf(), sinf() and tanf() on the range pi/4 < |x| <= 9pi/4, so
thes functions are now signifcantly faster than the hardware trig
functions in many cases.  E.g., in a benchmark with uniformly distributed
x in [-2pi, 2pi], A64 hardware fcos took 72-129 cycles and cosf() took
37-55 cycles.  Out-of-order execution is needed to get both of these
times.  The optimizations in this commit apparently work more by
removing 1 serialization point than by reducing latency.
2005-11-19 02:38:27 +00:00
Andre Oppermann
f6232df7a4 Document CLOCK_UPTIME which returns the current uptime in SI seconds.
At the moment it is just an alias for CLOCK_MONOTONIC which reports
the same number.

Sponsored by:	TCP/IP Optimization Fundraise 2005
2005-11-18 17:13:22 +00:00
Ruslan Ermilov
6b84cd5819 Fix markup, grammar and spelling. 2005-11-18 14:21:28 +00:00
Ruslan Ermilov
ca5137742a Fix up markup. 2005-11-18 11:54:14 +00:00
Ruslan Ermilov
5507a2aed5 Fix up markup etc. in recently born manpage. 2005-11-18 11:53:23 +00:00