sure we handle stacked registers properly by taking into account
that:
1. bspstore points after the frame (due to cover),
2. we need to adjust for intermediate NaT collections.
cr.isr sanity check. We actually encounter insanities, which very
likely means that the insanity check itself is insane. Remove an empty
comment while I'm at it.
An example of useless is bios.h. An example of wrong is msdos.h (due
to the use of long for 32-bit fields).
display.h cannot be removed because it's used by syscons. That header
however has no platform dependency and shouldn't really be here.
Removal if these headers may cause build failures in the ports tree.
It's the ports that need fixing in that case.
Tested with: buildworld, LINT
the RNAT bit index constant. The net effect of this is that there's
no discontinuity WRT NaT collections which greatly simplifies certain
operations. The cost of this is that there can be up to 504 bytes of
unused stack between the true base of the kernel stack and the start
of the RSE backing store. The cost of adjusting the backing store
pointer to keep the RNAT bit index constant, for each kernel entry,
is negligible.
The primary reasons for this change are:
1. Asynchronuous contexts in KSE processes have the disadvantage of
having to copy the dirty registers from the kernel stack onto the
user stack. The implementation we had so far copied the registers
one at a time without calculating NaT collection values. A process
that used speculation would not work. Now that the RNAT bit index
is constant, we can block-copy the registers from the kernel stack
to the user stack without having to worry about NaT collections.
They will be in the right place on the user stack.
2. The ndirty field in the trapframe is now also usable in userland.
This was previously not the case because ndirty also includes the
space occupied by NaT collections. The value could be off by 8,
depending on the discontinuity. Now that the RNAT bit index is
contants, we have exactly the same number of NaT collection points
on the kernel stack as we would have had on the user stack if we
didn't switch backing stores.
3. Debuggers and other applications that use ptrace(2) can now copy
the dirty registers from the kernel stack (using ptrace(2)) and
copy them whereever they want them (onto the user stack of the
inferior as might be the case for gdb) without having to worry
about NaT collections in the same way the kernel doesn't have to
worry about them.
There's a second order effect caused by the randomization of the
base of the backing store, for it depends on the number of dirty
registers the processor happened to have at the time of entry into
the kernel. The second order effect is that the RSE will have a
better cache utilization as compared to having the backing store
always aligned at page boundaries. This has not been measured and
may be in practice only minimally beneficial, if at all measurable.
license. Only clause 3 has been revoked. Restore the fourth clause
as clause 3.
Pointed out by: das@
Remove my name as a copyright holder since I don't use a BSD license
compatible or comparable to the UCB license. I choose not to add a
complete second license for my work for aesthetic reasons, nor to
replace the UCB license on grounds of rewriting more than 90% of the
source files. The rewrite can also be seen as an enhancement and since
the files were practically empty, it's rather trivial to have changed
90% of the files.
added for XFree86. There are 2 reasons for doing this with sysarch():
1. The memory mapped I/O space is not at a fixed physical address. An
application has to use some interface to get the base address. It
gets worse if the machine has multiple memory mapped I/O spaces.
2. Access to the memory mapped I/O space needs to happen through a
translation that is flagged as uncachable. There's no interface
that allows a process to do uncached memory I/O, other than though
/dev/mem (possibly).
So, until we either disallow direct access to I/O or bus space from
userland or have a better way of doing this, sysarch() has the least
negative impact on existing interfaces.
overlapping TR/TC entries (which results in a machine check). Note
that we don't look at the size of the memory descriptor, because
it doesn't guarantee non-overlap.
With this change, a UP kernel could boot on a Intel Tiger4 machine
with the following options:
options LOG2_ID_PAGE_SIZE=26 # 64M
options LOG2_PAGE_SIZE=14 # 16K
Approved by: marcel
we had were bogus.
While here, reassign the copyright to the Project. There's nothing
in this files that originates from NetBSD, especially now that the
FreeBSD/alpha bits have been removed, but even then the amount of
inherited code that we actually used was nil.
mcontext_t for the register values. Currently only ld8 and ldfd
instructions are handled as those are the ones we need now (a
misaligned ld8 occurs 4 times in ntpd(8) and a misaligned ldfd
occurs once in mozilla 1.4 and 1.5). Other instructions are added
when needed.
at the first address and spills it to the second address. This
allows unaligned_fixup() to update the context of the process in
a way that assures proper rounding.
Similar functions for single-and extended-precision are added when
needed.
in that it provides an abstract (intermediate) representation for
instructions. This significantly improves working with instructions
such as emulation of instructions that are not implemented by the
hardware (e.g. long branch) or enhancing implemented instructions
(e.g. handling of misaligned memory accesses). Not to mention that
it's much easier to print instructions.
Functions are included that provide a textual representation for
opcodes, completers and operands.
The disassembler supports all ia64 instructions defined by revision
2.1 of the SDM (Oct 2002).
by libguile that needs to know the base of the RSE backing store. We
currently do not export the fixed address to userland by means of a
sysctl so user code needs to hardcode it for now. This will be revisited
later.
The RSE backing store is now at the bottom of region 4. The memory stack
is at the top of region 4. This means that the whole region is usable
for the stacks, giving a 61-bit stack space.
Port: lang/guile (depended of x11/gnome2)
halt state that minimizes power consumption while still preserving
cache and TLB coherency. Halting the processor is not conditional at
this time. Tested with UP and SMP kernels.
from UWX_REG_MUMBLE to UWX_REG_AR_MUMBLE. Compatibility defines are
present in libuwx. Change the names here so that we don't depend on
compatibility defines.
Note that there's now an UWX_REG_PFS and an UWX_REG_AR_PFS and the
former is not a compatibility define for the latter AFAICT. Change
to UWX_REG_AR_PFS as that seems to be the one we need to handle.
A small helper function pmap_is_prefaultable() is added. This function
encapsulate the few lines of pmap_prefault() that actually vary from
machine to machine. Note: pmap_is_prefaultable() and pmap_mincore() have
much in common. Going forward, it's worth considering their merger.
frame marker) and the syscall stub frame info in the trap frame.
Previously we stored the stub frame info in (rp,pfs) and the
caller frame info in (iip,cfm). This ends up being suboptimal
for the following reasons:
1. When we create a new context, such as for an execve(2), we had
to set the (rp,pfs) pair for the entry point when using the
syscall path out of the kernel but we need to set the (iip,cfm)
pair when we take the interrupt way out. This is mostly just
an inconsistency from the kernel's point of view, but an ugly
irregularity from gdb(1)'s point of view.
2. The getcontext(2) and setcontext(2) syscalls had to swap the
(rp,pfs) and (iip,cfm) pairs to make the context compatible
with one created purely in userland.
Swapping the (rp,pfs) and (iip,cfm) pairs is visible to signal
handlers that actually peek at the mcontext_t and to gdb(1).
Since this change is made for gdb(1) and we don't care about
signal handlers that peek at the mcontext_t because we're still
a tier 2 platform, this ABI breakage is academic at this moment
in time.
Note that there was no real reason to save the caller frame info
in (iip,cfm) and the stub frame info in (rp,pfs).
about because we're still tier 2 and our current compiler, as well
as future compilers will not support varargs. This is mostly a
no-op in practice, because <sys/varargs.h> should already cause
compile failures.
systems where the data/stack/etc limits are too big for a 32 bit process.
Move the 5 or so identical instances of ELF_RTLD_ADDR() into imgact_elf.c.
Supply an ia32_fixlimits function. Export the clip/default values to
sysctl under the compat.ia32 heirarchy.
Have mmap(0, ...) respect the current p->p_limits[RLIMIT_DATA].rlim_max
value rather than the sysctl tweakable variable. This allows mmap to
place mappings at sensible locations when limits have been reduced.
Have the imgact_elf.c ld-elf.so.1 placement algorithm use the same
method as mmap(0, ...) now does.
Note that we cannot remove all references to the sysctl tweakable
maxdsiz etc variables because /etc/login.conf specifies a datasize
of 'unlimited'. And that causes exec etc to fail since it can no
longer find space to mmap things.
not guaranteed that the RSE writes the NaT collection immediately,
sort of atomically, to the backing store when it writes the register
immediately prior to the NaT collection point. This means that we
cannot assume that the low 9 bits of the backingstore pointer do not
point to the NaT collection. This is rather a surprise and I don't
know at this time if it's a bug in the Merced or that it's actually
a valid condition of the architecture. A quick scan over the sources
does not indicate that we depend on the false assumption elsewhere,
but it's something to keep in mind.
The fix is to write the saved contents of the ar.rnat register to
the backingstore prior to entering the loop that copies the dirty
registers from the kernel stack to the user stack.
functions reference UMA internals from <vm/uma_int.h>, which makes
them highly unwanted in non-UMA specific files.
While here, prune the includes in pmap.c and use __FBSDID(). Move
the includes above the descriptive comment.
The copyright of uma_machdep.c is assigned to the project and can
be reassigned to the foundation if and when when such is preferrable.
restart instruction bits in the PSR. As such, we were returning
from interrupt to the instruction in the bundle that caused us
to enter the kernel, only now we're returning to a completely
different bundle.
While close here: add two KASSERTs to make sure that we restore
sync contexts only when entered the kernel through a syscall and
restore an async context only when entered the kernel through an
interrupt, trap or fault.
While not exactly here, but close enough: use suword64() when we
copy the dirty registers from the kernel stack to the user stack.
The code was intended to be be replaced shortly after being added,
but that was a couple of weeks ago. I might as well avoid that it
is a source for panics until it's replaced.
can get (or not) and what we do with them. This fixes the behaviour
for NaT consumption and speculation faults in that we now don't panic
for user faults.
Remove the dopanic label and move the code to a function. This makes
it easier in the simulator to set a breakpoint.
While here, remove the special handling of the old break-based syscall
path and move it to where we handle the break vector. While here,
reserve a new break immediate for KSE. We currently use the old break-
based syscall to deal with restoring async contexts. However, it has
the side-effect of also setting the signal mask and callong ast() on
the way out. The new break immediate simply restores the context and
returns without calling ast().
but for CPL != 0. For some reason yet unknown it is possible for the
CPL to be 2. This would previously be counted as kernel mode, which
resulted in nasty panics. By changing the test it is now treated as
user mode, which is more correct. We still need to figure out how it
is possible that the privilege level can be 2 (or 1 for that matter),
because it's not used by us. We only use 3 (user mode) and 0 (kernel
mode).
we think is the correct trigger mode and polarity. This allows us to
implement BUS_CONFIG_INTR() as an update of the RTE in question.
Consequently, we can trust the RTE when we enable an interrupt and
avoids that we need to know about the trigger mode and polarity at
that time.
latter is a kernel option for IA64_ID_PAGE_SHIFT, which in turn
determines IA64_ID_PAGE_MASK and IA64_ID_PAGE_SIZE.
The constants are used instead of the literal hardcoding (in its
various forms) of the size of the direct mappings created in region
6 and 7. The default and probably only workable size is still 256M,
but for kicks we use 128M for LINT.
atomically extracts and holds the physical page that is associated with the
given pmap and virtual address. Such a function is needed to make the
memory mapping optimizations used by, for example, pipes and raw disk I/O
MP-safe.
Reviewed by: tegge
rl(4) driver and put it in a new re(4) driver. The re(4) driver shares
the if_rlreg.h file with rl(4) but is a separate module. (Ultimately
I may change this. For now, it's convenient.)
rl(4) has been modified so that it will never attach to an 8139C+
chip, leaving it to re(4) instead. Only re(4) has the PCI IDs to
match the 8169/8169S/8110S gigE chips. if_re.c contains the same
basic code that was originally bolted onto if_rl.c, with the
following updates:
- Added support for jumbo frames. Currently, there seems to be
a limit of approximately 6200 bytes for jumbo frames on transmit.
(This was determined via experimentation.) The 8169S/8110S chips
apparently are limited to 7.5K frames on transmit. This may require
some more work, though the framework to handle jumbo frames on RX
is in place: the re_rxeof() routine will gather up frames than span
multiple 2K clusters into a single mbuf list.
- Fixed bug in re_txeof(): if we reap some of the TX buffers,
but there are still some pending, re-arm the timer before exiting
re_txeof() so that another timeout interrupt will be generated, just
in case re_start() doesn't do it for us.
- Handle the 'link state changed' interrupt
- Fix a detach bug. If re(4) is loaded as a module, and you do
tcpdump -i re0, then you do 'kldunload if_re,' the system will
panic after a few seconds. This happens because ether_ifdetach()
ends up calling the BPF detach code, which notices the interface
is in promiscuous mode and tries to switch promisc mode off while
detaching the BPF listner. This ultimately results in a call
to re_ioctl() (due to SIOCSIFFLAGS), which in turn calls re_init()
to handle the IFF_PROMISC flag change. Unfortunately, calling re_init()
here turns the chip back on and restarts the 1-second timeout loop
that drives re_tick(). By the time the timeout fires, if_re.ko
has been unloaded, which results in a call to invalid code and
blows up the system.
To fix this, I cleared the IFF_UP flag before calling ether_ifdetach(),
which stops the ioctl routine from trying to reset the chip.
- Modified comments in re_rxeof() relating to the difference in
RX descriptor status bit layout between the 8139C+ and the gigE
chips. The layout is different because the frame length field
was expanded from 12 bits to 13, and they got rid of one of the
status bits to make room.
- Add diagnostic code (re_diag()) to test for the case where a user
has installed a broken 32-bit 8169 PCI NIC in a 64-bit slot. Some
NICs have the REQ64# and ACK64# lines connected even though the
board is 32-bit only (in this case, they should be pulled high).
This fools the chip into doing 64-bit DMA transfers even though
there is no 64-bit data path. To detect this, re_diag() puts the
chip into digital loopback mode and sets the receiver to promiscuous
mode, then initiates a single 64-byte packet transmission. The
frame is echoed back to the host, and if the frame contents are
intact, we know DMA is working correctly, otherwise we complain
loudly on the console and abort the device attach. (At the moment,
I don't know of any way to work around the problem other than
physically modifying the board, so until/unless I can think of a
software workaround, this will have do to.)
- Created re(4) man page
- Modified rlphy.c to allow re(4) to attach as well as rl(4).
Note that this code works for the sample 8169/Marvell 88E1000 NIC
that I have, but probably won't work for the 8169S/8110S chips.
RealTek has sent me some sample NICs, but they haven't arrived yet.
I will probably need to add an rlgphy driver to handle the on-board
PHY in the 8169S/8110S (it needs special DSP initialization).