this is a low-functionality change that changes the kernel to access the main
thread of a process via the linked list of threads rather than
assuming that it is embedded in the process. It IS still embeded there
but remove all teh code that assumes that in preparation for the next commit
which will actually move it out.
Reviewed by: peter@freebsd.org, gallatin@cs.duke.edu, benno rice,
- Create a private list of active pmaps rather than abusing the list of all
processes when we need to look up pmaps. The process list needs a sx lock
and we can't be getting sx locks in the middle of cpu_switch()
(pmap_activate() can call pmap_get_asn() from cpu_switch()). Instead, we
protect the list with a spinlock. This also means the list is shorter
since a pmap can be used by more than one process and we could (at least
in thoery) dink with pmap's more than once, but now we only touch each
pmap once when we have to update all of them.
- Wrap pmap_activate()'s code to get a new ASN in an explicit critical section
so that when it is called while doing an exec() we can't get preempted.
- Replace splhigh() in pmap_growkernel() with a critical section to prevent
preemption while we are adjusting the kernel page tables.
- Fixes abuse of PCPU_GET(), which doesn't return an L-value.
- Also adds some slight cleanups to the ASN handling by adding some macros
instead of magic numbers in relation to the ASN and ASN generations.
Reviewed by: dfr
mutex releases to not require flags for the cases when preemption is
not allowed:
The purpose of the MTX_NOSWITCH and SWI_NOSWITCH flags is to prevent
switching to a higher priority thread on mutex releease and swi schedule,
respectively when that switch is not safe. Now that the critical section
API maintains a per-thread nesting count, the kernel can easily check
whether or not it should switch without relying on flags from the
programmer. This fixes a few bugs in that all current callers of
swi_sched() used SWI_NOSWITCH, when in fact, only the ones called from
fast interrupt handlers and the swi_sched of softclock needed this flag.
Note that to ensure that swi_sched()'s in clock and fast interrupt
handlers do not switch, these handlers have to be explicitly wrapped
in critical_enter/exit pairs. Presently, just wrapping the handlers is
sufficient, but in the future with the fully preemptive kernel, the
interrupt must be EOI'd before critical_exit() is called. (critical_exit()
can switch due to a deferred preemption in a fully preemptive kernel.)
I've tested the changes to the interrupt code on i386 and alpha. I have
not tested ia64, but the interrupt code is almost identical to the alpha
code, so I expect it will work fine. PowerPC and ARM do not yet have
interrupt code in the tree so they shouldn't be broken. Sparc64 is
broken, but that's been ok'd by jake and tmm who will be fixing the
interrupt code for sparc64 shortly.
Reviewed by: peter
Tested on: i386, alpha
and it's associated state variables: icu_lock with the name "icu". This
renames the imen_mtx for x86 SMP, but also uses the lock to protect
access to the 8259 PIC on x86 UP. This also adds an appropriate lock to
the various Alpha chipsets which fixes problems with Alpha SMP machines
dropping interrupts with an SMP kernel.
- The MD functions critical_enter/exit are renamed to start with a cpu_
prefix.
- MI wrapper functions critical_enter/exit maintain a per-thread nesting
count and a per-thread critical section saved state set when entering
a critical section while at nesting level 0 and restored when exiting
to nesting level 0. This moves the saved state out of spin mutexes so
that interlocking spin mutexes works properly.
- Most low-level MD code that used critical_enter/exit now use
cpu_critical_enter/exit. MI code such as device drivers and spin
mutexes use the MI wrappers. Note that since the MI wrappers store
the state in the current thread, they do not have any return values or
arguments.
- mtx_intr_enable() is replaced with a constant CRITICAL_FORK which is
assigned to curthread->td_savecrit during fork_exit().
Tested on: i386, alpha
In this case, C99's __func__ is properly defined as:
static const char __func__[] = "function-name";
and GCC 3.1 will not allow it to be used in bogus string concatenation.
Note ALL MODULES MUST BE RECOMPILED
make the kernel aware that there are smaller units of scheduling than the
process. (but only allow one thread per process at this time).
This is functionally equivalent to teh previousl -current except
that there is a thread associated with each process.
Sorry john! (your next MFC will be a doosie!)
Reviewed by: peter@freebsd.org, dillon@freebsd.org
X-MFC after: ha ha ha ha
- Clean up the KTR tracepoints to be slighlty more consistent and useful
- Fix a bug in WITNESS where we would recurse indefinitely and blow the
stack when acquiring Giant after sleeping with a sleepable lock held.
Reported by: tanimura (3)
may need the clock lock for nanotime().
- Add KTR trace events for lock list manipulations and other witness
operations.
- Use a temporary variable instead of setting the lock list head directly
and then setting up the links to add a new lock list entry to the lock
list. This small race could result in witness "forgetting" about all
the locks held by this process temporarily during an interrupt.
- Close a more fatal race condition when removing a lock from a list.
Removing a lock from the list entails both decrementing the count of
items in this bucket as well as shuffling items in the current bucket up
a notch to replace the gap left by the removed item. Wrap these
operations in a critical section.
around, use a common function for looking up and extracting the tunables
from the kernel environment. This saves duplicating the same function
over and over again. This way typically has an overhead of 8 bytes + the
path string, versus about 26 bytes + the path string.
lock. Since we won't actually block on a try lock operation, it's not
a problem. Add a comment explaining why it is safe to skip lock order
checking with try locks.
- Remove the ithread list lock spin lock from the order list.
fail due to witness exhausting its internal resources and shutting down.
Reported by: Szilveszter Adam <sziszi@petra.hos.u-szeged.hu>
Tested by: David Wolfskill <david@catwhisker.org>
struct lock_instance that is stored in the per-process and per-CPU lock
lists. Previously, the lock lists just kept a pointer to each lock held.
That pointer is now replaced by a lock instance which contains a pointer
to the lock object, the file and line of the last acquisition of a lock,
and various flags about a lock including its recursion count.
- If we sleep while holding a sleepable lock, then mark that lock instance
as having slept and ignore any lock order violations that occur while
acquiring Giant when we wake up with slept locks. This is ok because of
Giant's special nature.
- Allow witness to differentiate between shared and exclusive locks and
unlocks of a lock. Witness will now detect the case when a lock is
acquired first in one mode and then in another. Mutexes are always
locked and unlocked exclusively. Witness will also now detect the case
where a process attempts to unlock a shared lock while holding an
exclusive lock and vice versa.
- Fix a bug in the lock list implementation where we used the wrong
constant to detect the case where a lock list entry was full.
can happen if witness runs out of resources during initialization or if
witness_skipspin is enabled.
Sleuthing by: Peter Jeremy <peter.jeremy@alcatel.com.au>
count drops to 0 in witness_destroy, set the w_name and w_file pointers
to point to the string "(dead)" and the w_line field to 0. This way,
if a mutex of a given name is used only in a module, then as long as
all mutexes in the module are destroyed when the module is unloaded,
witness will not maintain stale references to the mutex's name in the
module's data section causing a panic later on when the w_name or w_file
field's are examined.
list into a public witness_list_locks() function. Call this function
twice in witness_list() instead of using an evil goto.
- Adjust the 'show locks' command to take an optional parameter which
specifies the pid of a process to list the locks of. By default the
locks held by the current process are displayed.
locks were held, we could be preempted and switch CPU's in between the time
that we set a variable to the list of spin locks on our CPU and the time
that we checked that variable to ensure no spinlocks were held while
grabbing a sleep lock. Losing the race resulted in checking some other
CPU's spin lock list and bogusly panicing.
- Introduce lock classes and lock objects. Each lock class specifies a
name and set of flags (or properties) shared by all locks of a given
type. Currently there are three lock classes: spin mutexes, sleep
mutexes, and sx locks. A lock object specifies properties of an
additional lock along with a lock name and all of the extra stuff needed
to make witness work with a given lock. This abstract lock stuff is
defined in sys/lock.h. The lockmgr constants, types, and prototypes have
been moved to sys/lockmgr.h. For temporary backwards compatability,
sys/lock.h includes sys/lockmgr.h.
- Replace proc->p_spinlocks with a per-CPU list, PCPU(spinlocks), of spin
locks held. By making this per-cpu, we do not have to jump through
magic hoops to deal with sched_lock changing ownership during context
switches.
- Replace proc->p_heldmtx, formerly a list of held sleep mutexes, with
proc->p_sleeplocks, which is a list of held sleep locks including sleep
mutexes and sx locks.
- Add helper macros for logging lock events via the KTR_LOCK KTR logging
level so that the log messages are consistent.
- Add some new flags that can be passed to mtx_init():
- MTX_NOWITNESS - specifies that this lock should be ignored by witness.
This is used for the mutex that blocks a sx lock for example.
- MTX_QUIET - this is not new, but you can pass this to mtx_init() now
and no events will be logged for this lock, so that one doesn't have
to change all the individual mtx_lock/unlock() operations.
- All lock objects maintain an initialized flag. Use this flag to export
a mtx_initialized() macro that can be safely called from drivers. Also,
we on longer walk the all_mtx list if MUTEX_DEBUG is defined as witness
performs the corresponding checks using the initialized flag.
- The lock order reversal messages have been improved to output slightly
more accurate file and line numbers.
and change the u_int mtx_saveintr member of struct mtx to a critical_t
mtx_savecrit.
- On the alpha we no longer need a custom _get_spin_lock() macro to avoid
an extra PAL call, so remove it.
- Partially fix using mutexes with WITNESS in modules. Change all the
_mtx_{un,}lock_{spin,}_flags() macros to accept explicit file and line
parameters and rename them to use a prefix of two underscores. Inside
of kern_mutex.c, generate wrapper functions for
_mtx_{un,}lock_{spin,}_flags() (only using a prefix of one underscore)
that are called from modules. The macros mtx_{un,}lock_{spin,}_flags()
are mapped to the __mtx_* macros inside of the kernel to inline the
usual case of mutex operations and map to the internal _mtx_* functions
in the module case so that modules will use WITNESS and KTR logging if
the kernel is compiled with support for it.
if we hold a spin mutex, since we can trivially get into deadlocks if we
start switching out of processes that hold spinlocks. Checking to see if
interrupts were disabled was a sort of cheap way of doing this since most
of the time interrupts were only disabled when holding a spin lock. At
least on the i386. To fix this properly, use a per-process counter
p_spinlocks that counts the number of spin locks currently held, and
instead of checking to see if interrupts are disabled in the witness code,
check to see if we hold any spin locks. Since child processes always
start up with the sched lock magically held in fork_exit(), we initialize
p_spinlocks to 1 for child processes. Note that proc0 doesn't go through
fork_exit(), so it starts with no spin locks held.
Consulting from: cp
don't end up back at ourselves which would indicate deadlock.
- Add the proc lock to the witness dup_list as we may hold more than one
process lock at a time.
- Don't assert a mutex is owned in _mtx_unlock_sleep() as that is too late.
We do the checks in the macros instead.
update native priority, it is diffcult to get right and likely
to end up horribly wrong. Use an honestly wrong fixed value
that seems to work; PUSER for user threads, and the interrupt
priority for ithreads. Set it once when the process is created
and forget about it.
Suggested by: bde
Pointy hat: me
process's priority go through the roof when it released a (contested)
mutex. Only set the native priority in mtx_lock if hasn't already
been set.
Reviewed by: jhb
passed in filename and line number in the KTR tracepoint message.
- Even though it is #if 0'd code, change the code to detect that a process
is an interrupt thread to check p->p_ithd against NULL rather than
checking non-existant process flags from BSD/OS.
- Use '%p' to print pointers in KTR log messages instead of assuming
sizeof(int) == sizeof(void *).
- Don't set p_mtxname to NULL when releasing a mutex. It doesn't hurt
to leave it set (we don't clear w_mesg for example) and at least at
one time in the past, there used to be race conditions in the kernel
that would result in setting this to NULL causing the kernel to
dereference NULL.
- Make the _mtx_assert() function be compiled in if INVARIANTS_SUPPORT is
defined rather than if INVARIANTS is defined so that a KLD compiled
with INVARIANTS that uses mtx_assert() can be used with a kernel that
just has INVARIANT_SUPPORT compiled in.