with kld etc just fine, but tracebacks would have less information and
nm /kernel wouldn't be so good).
- Just strip the kernel on the boot disk. This does not affect kld or
module loading, there are two symbol tables in a kernel. There is the
dynamic linking one (.dynsym+.strtab) with just global symbols and a user
symbol table (.symtab+.strtab) with all symbols. BTW; objdump lies and
hides the second one. There's a good half a meg or so that can be saved
from an average kernel by stripping it.
ethernet adapters that are supported by the aue and kue drivers.
There are actually a couple more out there from Accton, Asante and
EXP Computer, however I was not able to find any Windows device
drivers for these on their servers, and hence could not harvest
their vendor/device ID info. If somebody has one of these things
and can look in the .inf file that comes with the Windows driver,
I'd appreciate knowing what it says for 'VID' and 'PID.'
Additional adapters include: the D-Link DSB-650 and DSB-650TX, the
SMC 2102USB, 2104USB and 2202USB, the ATen UC10T, and the Netgear EA101.
These are all mentioned in the man pages, relnotes and LINT.
Also correct the date in the kue(4) man page. I wrote this thing
on Jan, 4 2000, not 1999.
Kawasaki LSI KL5KUSB101B chip, including the LinkSys USB10T, the
Entrega NET-USB-E45, the Peracom USB Ethernet Adapter, the 3Com
3c19250 and the ADS Technologies USB-10BT. This device is 10mbs
half-duplex only, so there's miibus or ifmedia support. This device
also requires firmware to be loaded into it, however KLSI allows
redistribution of the firmware images (I specifically asked about
this; they said it was ok).
Special thanks to Annelise Anderson for getting me in touch with
KLSI (eventually) and thanks to KLSI for providing the necessary
programming info.
Highlights:
- Add driver files to /sys/dev/usb
- update usbdevs and regenerate attendate files
- update usb_quirks.c
- Update HARDWARE.TXT and RELNOTES.TXT for i386 and alpha
- Update LINT, GENERIC and others for i386, alpha and pc98
- Add man page
- Add module
- Update sysinstall and userconfig.c
USB ethernet chip. Adapters that use this chip include the LinkSys
USB100TX. There are a few others, but I'm not certain of their
availability in the U.S. I used an ADMtek eval board for development.
Note that while the ADMtek chip is a 100Mbps device, you can't really
get 100Mbps speeds over USB. Regardless, this driver uses miibus to
allow speed and duplex mode selection as well as autonegotiation.
Building and kldloading the driver as a module is also supported.
Note that in order to make this driver work, I had to make what some
may consider an ugly hack to sys/dev/usb/usbdi.c. The usbd_transfer()
function will use tsleep() for synchronous transfers that don't complete
right away. This is a problem since there are times when we need to
do sync transfers from an interrupt context (i.e. when reading registers
from the MAC via the control endpoint), where tsleep() us a no-no.
My hack allows the driver to have the code poll for transfer completion
subject to the xfer->timeout timeout rather that calling tsleep().
This hack is controlled by a quirk entry and is only enabled for the
ADMtek device.
Now, I'm sure there are a few of you out there ready to jump on me
and suggest some other approach that doesn't involve a busy wait. The
only solution that might work is to handle the interrupts in a kernel
thread, where you may have something resembling a process context that
makes it okay to tsleep(). This is lovely, except we don't have any
mechanism like that now, and I'm not about to implement such a thing
myself since it's beyond the scope of driver development. (Translation:
I'll be damned if I know how to do it.) If FreeBSD ever aquires such
a mechanism, I'll be glad to revisit the driver to take advantage of
it. In the meantime, I settled for what I perceived to be the solution
that involved the least amount of code changes. In general, the hit
is pretty light.
Also note that my only USB test box has a UHCI controller: I haven't
I don't have a machine with an OHCI controller available.
Highlights:
- Updated usb_quirks.* to add UQ_NO_TSLEEP quirk for ADMtek part.
- Updated usbdevs and regenerated generated files
- Updated HARDWARE.TXT and RELNOTES.TXT files
- Updated sysinstall/device.c and userconfig.c
- Updated kernel configs -- device aue0 is commented out by default
- Updated /sys/conf/files
- Added new kld module directory
working. It was, as I predicted, a stupid bug and thanks to the
submitter for spotting it. I'll also re-roll some 3.4-RELEASE install
floppies for this.
originally done to track down yet another case of lost init, and is
not strictly necessary, but it seems more logical to have binaries in
/sbin than in /stand. Previously /sbin and /bin were symlinks to
/stand. Now /bin and /stand are symlinks to /sbin.
as a preprocessor variable only. This broke the build of ppp. This
problem still exists in the old-style directories.
Debugging-help-supplied-by: brian
originally done to track down yet another case of lost init, and is
not strictly necessary, but it seems more logical to have binaries in
/sbin than in /stand. Previously /sbin and /bin were symlinks to
/stand. Now /bin and /stand are symlinks to /sbin.
only way to be sure the build works correctly is to do a 'make all'.
But with these changes, it's easier to test individual targets. In
particular, ensure that the vnode file systems are mounted before
writing to them.
Ensure that we don't get CVS directories on our floppies.
Use kgzip instead of kzip to compress the loader. This saves a few
kB.
Remove some test cruft.
Kill duplicates for programs that have been in the boot crunched image
as well as on the fixit floppy (pwd, newfs, hostname, test). Our
space is really too valuable to have them around there twice. I doubt
pwd needs to be there at all since it's a builtin into sh(1) anyway
(oh, and the same applies to test(1) IIRC), but heck, leave them by
now.
Use the new `fixit' target in MAKEDEV to create the /dev nodes on
the floppy, instead of including the kitchensink...
Finally, tune the values used for creating the floppy. I currently
end up with
Filesystem 1K-blocks Used Avail Capacity iused ifree %iused
/dev/vnn0c 1363 1301 -47 104% 368 14 96%
...which is not quite ideal yet, but at least a working configuration
again.