The lock structure cannot be the first element of the vm_map
because this can result in livelock between two or more system
processes trying to kmem_alloc_wait.
Remove semicolons or add "do { } while (0)" as necessary
to enable the use of these macros in arbitrary statements.
(There are no functional changes.)
Submitted by: dillon
Remove a useless argument from vm_map_madvise's interface (vm_map.c,
vm_map.h, and vm_mmap.c).
Remove a redundant test in vm_uiomove (vm_map.c).
Make two changes to vm_object_coalesce:
1. Determine whether the new range of pages actually overlaps
the existing object's range of pages before calling vm_object_page_remove.
(Prior to this change almost 90% of the calls to vm_object_page_remove
were to remove pages that were beyond the end of the object.)
2. Free any swap space allocated to removed pages.
It never makes sense to specify MAP_COPY_NEEDED without also specifying
MAP_COPY_ON_WRITE, and vice versa. Thus, MAP_COPY_ON_WRITE suffices.
Reviewed by: David Greenman <dg@root.com>
is the preparation step for moving pmap storage out of vmspace proper.
Reviewed by: Alan Cox <alc@cs.rice.edu>
Matthew Dillion <dillon@apollo.backplane.com>
attempt to optimize forks but were essentially given-up on due to
problems and replaced with an explicit dup of the vm_map_entry structure.
Prior to the removal, they were entirely unused.
This changes the definitions of a few items so that structures are the
same whether or not the option itself is enabled. This allows
people to enable and disable the option without recompilng the world.
As the author says:
|I ran into a problem pulling out the VM_STACK option. I was aware of this
|when I first did the work, but then forgot about it. The VM_STACK stuff
|has some code changes in the i386 branch. There need to be corresponding
|changes in the alpha branch before it can come out completely.
what is done:
|
|1) Pull the VM_STACK option out of the header files it appears in. This
|really shouldn't affect anything that executes with or without the rest
|of the VM_STACK patches. The vm_map_entry will then always have one
|extra element (avail_ssize). It just won't be used if the VM_STACK
|option is not turned on.
|
|I've also pulled the option out of vm_map.c. This shouldn't harm anything,
|since the routines that are enabled as a result are not called unless
|the VM_STACK option is enabled elsewhere.
|
|2) Add what appears to be appropriate code the the alpha branch, still
|protected behind the VM_STACK switch. I don't have an alpha machine,
|so we would need to get some testers with alpha machines to try it out.
|
|Once there is some testing, we can consider making the change permanent
|for both i386 and alpha.
|
[..]
|
|Once the alpha code is adequately tested, we can pull VM_STACK out
|everywhere.
|
Submitted by: "Richard Seaman, Jr." <dick@tar.com>
downward growing stacks more general.
Add (but don't activate) code to use the new stack facility
when running threads, (specifically the linux threads support).
This allows people to use both linux compiled linuxthreads, and also the
native FreeBSD linux-threads port.
The code is conditional on VM_STACK. Not using this will
produce the old heavily tested system.
Submitted by: Richard Seaman <dick@tar.com>
1) Start using TSM.
Struct procs continue to point to upages structure, after being freed.
Struct vmspace continues to point to pte object and kva space for kstack.
u_map is now superfluous.
2) vm_map's don't need to be reference counted. They always exist either
in the kernel or in a vmspace. The vmspaces are managed by reference
counts.
3) Remove the "wired" vm_map nonsense.
4) No need to keep a cache of kernel stack kva's.
5) Get rid of strange looking ++var, and change to var++.
6) Change more data structures to use our "zone" allocator. Added
struct proc, struct vmspace and struct vnode. This saves a significant
amount of kva space and physical memory. Additionally, this enables
TSM for the zone managed memory.
7) Keep ioopt disabled for now.
8) Remove the now bogus "single use" map concept.
9) Use generation counts or id's for data structures residing in TSM, where
it allows us to avoid unneeded restart overhead during traversals, where
blocking might occur.
10) Account better for memory deficits, so the pageout daemon will be able
to make enough memory available (experimental.)
11) Fix some vnode locking problems. (From Tor, I think.)
12) Add a check in ufs_lookup, to avoid lots of unneeded calls to bcmp.
(experimental.)
13) Significantly shrink, cleanup, and make slightly faster the vm_fault.c
code. Use generation counts, get rid of unneded collpase operations,
and clean up the cluster code.
14) Make vm_zone more suitable for TSM.
This commit is partially as a result of discussions and contributions from
other people, including DG, Tor Egge, PHK, and probably others that I
have forgotten to attribute (so let me know, if I forgot.)
This is not the infamous, final cleanup of the vnode stuff, but a necessary
step. Vnode mgmt should be correct, but things might still change, and
there is still some missing stuff (like ioopt, and physical backing of
non-merged cache files, debugging of layering concepts.)
config option in pmap. Fix a problem with faulting in pages. Clean-up
some loose ends in swap pager memory management.
The system should be much more stable, but all subtile bugs aren't fixed yet.
original BSD code. The association between the vnode and the vm_object
no longer includes reference counts. The major difference is that
vm_object's are no longer freed gratuitiously from the vnode, and so
once an object is created for the vnode, it will last as long as the
vnode does.
When a vnode object reference count is incremented, then the underlying
vnode reference count is incremented also. The two "objects" are now
more intimately related, and so the interactions are now much less
complex.
When vnodes are now normally placed onto the free queue with an object still
attached. The rundown of the object happens at vnode rundown time, and
happens with exactly the same filesystem semantics of the original VFS
code. There is absolutely no need for vnode_pager_uncache and other
travesties like that anymore.
A side-effect of these changes is that SMP locking should be much simpler,
the I/O copyin/copyout optimizations work, NFS should be more ponderable,
and further work on layered filesystems should be less frustrating, because
of the totally coherent management of the vnode objects and vnodes.
Please be careful with your system while running this code, but I would
greatly appreciate feedback as soon a reasonably possible.
VM systems usage of the kernel lock (lockmgr) code. This is a first
pass implementation, and is expected to evolve as needed. The API
for the lock manager code has not changed, but the underlying implementation
has changed significantly. This change should not materially affect
our current SMP or UP code without non-standard parameters being used.
space. (!)
Have each process use the kernel stack and pcb in the kvm space. Since
the stacks are at a different address, we cannot copy the stack at fork()
and allow the child to return up through the function call tree to return
to user mode - create a new execution context and have the new process
begin executing from cpu_switch() and go to user mode directly.
In theory this should speed up fork a bit.
Context switch the tss_esp0 pointer in the common tss. This is a lot
simpler since than swithching the gdt[GPROC0_SEL].sd.sd_base pointer
to each process's tss since the esp0 pointer is a 32 bit pointer, and the
sd_base setting is split into three different bit sections at non-aligned
boundaries and requires a lot of twiddling to reset.
The 8K of memory at the top of the process space is now empty, and unmapped
(and unmappable, it's higher than VM_MAXUSER_ADDRESS).
Simplity the pmap code to manage process contexts, we no longer have to
double map the UPAGES, this simplifies and should measuably speed up fork().
The following parts came from John Dyson:
Set PG_G on the UPAGES that are now in kernel context, and invalidate
them when swapping them out.
Move the upages object (upobj) from the vmspace to the proc structure.
Now that the UPAGES (pcb and kernel stack) are out of user space, make
rfork(..RFMEM..) do what was intended by sharing the vmspace
entirely via reference counting rather than simply inheriting the mappings.
by Alan Cox <alc@cs.rice.edu>, and his description of the problem.
The bug was primarily in procfs_mem, but the mistake likely happened
due to the lack of vm system support for the operation. I added
better support for selective marking of page dirty flags so that
vm_map_pageable(wiring) will not cause this problem again.
The code in procfs_mem is now less bogus (but maybe still a little
so.)
changes, so don't expect to be able to run the kernel as-is (very well)
without the appropriate Lite/2 userland changes.
The system boots and can mount UFS filesystems.
Untested: ext2fs, msdosfs, NFS
Known problems: Incorrect Berkeley ID strings in some files.
Mount_std mounts will not work until the getfsent
library routine is changed.
Reviewed by: various people
Submitted by: Jeffery Hsu <hsu@freebsd.org>
This will make a number of things easier in the future, as well as (finally!)
avoiding the Id-smashing problem which has plagued developers for so long.
Boy, I'm glad we're not using sup anymore. This update would have been
insane otherwise.
vm_map_simplify and vm_map_simplify_entry. Make vm_map_simplify_entry
handle wired maps so that we can get rid of vm_map_simplify. Modify
the callers of vm_map_simplify to properly use vm_map_simplify_entry.
Submitted by: Alan Cox <alc@cs.rice.edu>
that we do allow mlock to span unallocated regions (of course, not
mlocking them.) We also allow mlocking of RO regions (which the old
code couldn't.) The restriction there is that once a RO region is
wired (mlocked), it cannot be debugged (or EVER written to.)
Under normal usage, the new mlock code will be a significant improvement
over our old stuff.
that map entries are coalesced when appropriate. Also, conditionalize
some code that is currently not used in vm_map_insert. This mod
has been added to eliminate unnecessary map entries in buffer map.
Additionally, there were some cases where map coalescing could be done
when it shouldn't. That problem has been resolved.
scheme. Additionally, add the capability for checking for unexpected
kernel page faults. The maximum amount of kva space for buffers hasn't
been decreased from where it is, but it will now be possible to do so.
This scheme manages the kva space similar to the buffers themselves. If
there isn't enough kva space because of usage or fragementation, buffers
will be reclaimed until a buffer allocation is successful. This scheme
should be very resistant to fragmentation problems until/if the LFS code
is fixed and uses the bogus buffer locking scheme -- but a 'fixed' LFS
is not likely to use such a scheme.
Now there should be NO problem allocating buffers up to MAXPHYS.
problem with the 'shell scripts' was found, but there was a 'strange'
problem found with a 486 laptop that we could not find. This commit
backs the code back to 25-jul, and will be re-entered after the snapshot
in smaller (more easily tested) chunks.
performance issues.
1) The pmap module has had too many inlines, and so the
object file is simply bigger than it needs to be.
Some common code is also merged into subroutines.
2) Removal of some *evil* PHYS_TO_VM_PAGE macro calls.
Unfortunately, a few have needed to be added also.
The removal caused the need for more vm_page_lookups.
I added lookup hints to minimize the need for the
page table lookup operations.
3) Removal of some bogus performance improvements, that
mostly made the code more complex (tracking individual
page table page updates unnecessarily). Those improvements
actually hurt 386 processors perf (not that people who
worry about perf use 386 processors anymore :-)).
4) Changed pv queue manipulations/structures to be TAILQ's.
5) The pv queue code has had some performance problems since
day one. Some significant scalability issues are resolved
by threading the pv entries from the pmap AND the physical
address instead of just the physical address. This makes
certain pmap operations run much faster. This does
not affect most micro-benchmarks, but should help loaded system
performance *significantly*. DG helped and came up with most
of the solution for this one.
6) Most if not all pmap bit operations follow the pattern:
pmap_test_bit();
pmap_clear_bit();
That made for twice the necessary pv list traversal. The
pmap interface now supports only pmap_tc_bit type operations:
pmap_[test/clear]_modified, pmap_[test/clear]_referenced.
Additionally, the modified routine now takes a vm_page_t arg
instead of a phys address. This eliminates a PHYS_TO_VM_PAGE
operation.
7) Several rewrites of routines that contain redundant code to
use common routines, so that there is a greater likelihood of
keeping the cache footprint smaller.
Speed up for vfs_bio -- addition of a routine bqrelse to greatly diminish
overhead for merged cache.
Efficiency improvement for vfs_cluster. It used to do alot of redundant
calls to cluster_rbuild.
Correct the ordering for vrele of .text and release of credentials.
Use the selective tlb update for 486/586/P6.
Numerous fixes to the size of objects allocated for files. Additionally,
fixes in the various pagers.
Fixes for proper positioning of vnode_pager_setsize in msdosfs and ext2fs.
Fixes in the swap pager for exhausted resources. The pageout code
will not as readily thrash.
Change the page queue flags (PG_ACTIVE, PG_INACTIVE, PG_FREE, PG_CACHE) into
page queue indices (PQ_ACTIVE, PQ_INACTIVE, PQ_FREE, PQ_CACHE),
thereby improving efficiency of several routines.
Eliminate even more unnecessary vm_page_protect operations.
Significantly speed up process forks.
Make vm_object_page_clean more efficient, thereby eliminating the pause
that happens every 30seconds.
Make sequential clustered writes B_ASYNC instead of B_DELWRI even in the
case of filesystems mounted async.
Fix a panic with busy pages when write clustering is done for non-VMIO
buffers.
proc or any VM system structure will have to be rebuilt!!!
Much needed overhaul of the VM system. Included in this first round of
changes:
1) Improved pager interfaces: init, alloc, dealloc, getpages, putpages,
haspage, and sync operations are supported. The haspage interface now
provides information about clusterability. All pager routines now take
struct vm_object's instead of "pagers".
2) Improved data structures. In the previous paradigm, there is constant
confusion caused by pagers being both a data structure ("allocate a
pager") and a collection of routines. The idea of a pager structure has
escentially been eliminated. Objects now have types, and this type is
used to index the appropriate pager. In most cases, items in the pager
structure were duplicated in the object data structure and thus were
unnecessary. In the few cases that remained, a un_pager structure union
was created in the object to contain these items.
3) Because of the cleanup of #1 & #2, a lot of unnecessary layering can now
be removed. For instance, vm_object_enter(), vm_object_lookup(),
vm_object_remove(), and the associated object hash list were some of the
things that were removed.
4) simple_lock's removed. Discussion with several people reveals that the
SMP locking primitives used in the VM system aren't likely the mechanism
that we'll be adopting. Even if it were, the locking that was in the code
was very inadequate and would have to be mostly re-done anyway. The
locking in a uni-processor kernel was a no-op but went a long way toward
making the code difficult to read and debug.
5) Places that attempted to kludge-up the fact that we don't have kernel
thread support have been fixed to reflect the reality that we are really
dealing with processes, not threads. The VM system didn't have complete
thread support, so the comments and mis-named routines were just wrong.
We now use tsleep and wakeup directly in the lock routines, for instance.
6) Where appropriate, the pagers have been improved, especially in the
pager_alloc routines. Most of the pager_allocs have been rewritten and
are now faster and easier to maintain.
7) The pagedaemon pageout clustering algorithm has been rewritten and
now tries harder to output an even number of pages before and after
the requested page. This is sort of the reverse of the ideal pagein
algorithm and should provide better overall performance.
8) Unnecessary (incorrect) casts to caddr_t in calls to tsleep & wakeup
have been removed. Some other unnecessary casts have also been removed.
9) Some almost useless debugging code removed.
10) Terminology of shadow objects vs. backing objects straightened out.
The fact that the vm_object data structure escentially had this
backwards really confused things. The use of "shadow" and "backing
object" throughout the code is now internally consistent and correct
in the Mach terminology.
11) Several minor bug fixes, including one in the vm daemon that caused
0 RSS objects to not get purged as intended.
12) A "default pager" has now been created which cleans up the transition
of objects to the "swap" type. The previous checks throughout the code
for swp->pg_data != NULL were really ugly. This change also provides
the rudiments for future backing of "anonymous" memory by something
other than the swap pager (via the vnode pager, for example), and it
allows the decision about which of these pagers to use to be made
dynamically (although will need some additional decision code to do
this, of course).
13) (dyson) MAP_COPY has been deprecated and the corresponding "copy
object" code has been removed. MAP_COPY was undocumented and non-
standard. It was furthermore broken in several ways which caused its
behavior to degrade to MAP_PRIVATE. Binaries that use MAP_COPY will
continue to work correctly, but via the slightly different semantics
of MAP_PRIVATE.
14) (dyson) Sharing maps have been removed. It's marginal usefulness in a
threads design can be worked around in other ways. Both #12 and #13
were done to simplify the code and improve readability and maintain-
ability. (As were most all of these changes)
TODO:
1) Rewrite most of the vnode pager to use VOP_GETPAGES/PUTPAGES. Doing
this will reduce the vnode pager to a mere fraction of its current size.
2) Rewrite vm_fault and the swap/vnode pagers to use the clustering
information provided by the new haspage pager interface. This will
substantially reduce the overhead by eliminating a large number of
VOP_BMAP() calls. The VOP_BMAP() filesystem interface should be
improved to provide both a "behind" and "ahead" indication of
contiguousness.
3) Implement the extended features of pager_haspage in swap_pager_haspage().
It currently just says 0 pages ahead/behind.
4) Re-implement the swap device (swstrategy) in a more elegant way, perhaps
via a much more general mechanism that could also be used for disk
striping of regular filesystems.
5) Do something to improve the architecture of vm_object_collapse(). The
fact that it makes calls into the swap pager and knows too much about
how the swap pager operates really bothers me. It also doesn't allow
for collapsing of non-swap pager objects ("unnamed" objects backed by
other pagers).
much higher filesystem I/O performance, and much better paging performance. It
represents the culmination of over 6 months of R&D.
The majority of the merged VM/cache work is by John Dyson.
The following highlights the most significant changes. Additionally, there are
(mostly minor) changes to the various filesystem modules (nfs, msdosfs, etc) to
support the new VM/buffer scheme.
vfs_bio.c:
Significant rewrite of most of vfs_bio to support the merged VM buffer cache
scheme. The scheme is almost fully compatible with the old filesystem
interface. Significant improvement in the number of opportunities for write
clustering.
vfs_cluster.c, vfs_subr.c
Upgrade and performance enhancements in vfs layer code to support merged
VM/buffer cache. Fixup of vfs_cluster to eliminate the bogus pagemove stuff.
vm_object.c:
Yet more improvements in the collapse code. Elimination of some windows that
can cause list corruption.
vm_pageout.c:
Fixed it, it really works better now. Somehow in 2.0, some "enhancements"
broke the code. This code has been reworked from the ground-up.
vm_fault.c, vm_page.c, pmap.c, vm_object.c
Support for small-block filesystems with merged VM/buffer cache scheme.
pmap.c vm_map.c
Dynamic kernel VM size, now we dont have to pre-allocate excessive numbers of
kernel PTs.
vm_glue.c
Much simpler and more effective swapping code. No more gratuitous swapping.
proc.h
Fixed the problem that the p_lock flag was not being cleared on a fork.
swap_pager.c, vnode_pager.c
Removal of old vfs_bio cruft to support the past pseudo-coherency. Now the
code doesn't need it anymore.
machdep.c
Changes to better support the parameter values for the merged VM/buffer cache
scheme.
machdep.c, kern_exec.c, vm_glue.c
Implemented a seperate submap for temporary exec string space and another one
to contain process upages. This eliminates all map fragmentation problems
that previously existed.
ffs_inode.c, ufs_inode.c, ufs_readwrite.c
Changes for merged VM/buffer cache. Add "bypass" support for sneaking in on
busy buffers.
Submitted by: John Dyson and David Greenman