to 1GB. A box of mine is running with MAXDSIZ and DFLDSIZ increased
up to 1.5GB.
Wishlist: It would be nice to warn if MAXTSIZ + MAXDSIZ + MAXSSIZ
exceeds VM_MAXUSER_ADDRESS - VM_MINUSER_ADDRESS.
slow enough as it is, without having to constantly check that it really
is an i386 still. It was possible to compile out the conditionals for
faster cpus by leaving out 'I386_CPU', but it was not possible to
unconditionally compile for the i386. You got the runtime checking whether
you wanted it or not. This makes I386_CPU mutually exclusive with the
other cpu types, and tidies things up a little in the process.
Reviewed by: alfred, markm, phk, benno, jlemon, jhb, jake, grog, msmith,
jasone, dcs, des (and a bunch more people who encouraged it)
exactly the same functionality via a sysctl, making this feature
a run-time option.
The default is 1(ON), which means that /dev/random device will
NOT block at startup.
setting kern.random.sys.seeded to 0(OFF) will cause /dev/random
to block until the next reseed, at which stage the sysctl
will be changed back to 1(ON).
While I'm here, clean up the sysctls, and make them dynamic.
Reviewed by: des
Tested on Alpha by: obrien
To use it, some dll is needed. And currently, the dll is only for NetBSD.
So one more kernel module is needed.
For more infomation,
http://chiharu.haun.org/peace/ .
Reviewed by: bp
This is a driver for the LanMedia/SBE LMC150x E1/T1 family of cards.
The driver currently support unframed E1 (2048kbit/s) and framed
E1 (nx64).
These cards will provision E1/T1 lines for about 1/4 the cost of
a cisco router...
(a NetBSD port for NEC PC-98x1 machines). They are ncv for NCR 53C500,
nsp for Workbit Ninja SCSI-3, and stg for TMC 18C30 and 18C50.
I thank NetBSD/pc98 and bsd-nomads people.
Obtained from: NetBSD/pc98
description:
How it works:
--
Basically ifs is a copy of ffs, overriding some vfs/vnops. (Yes, hack.)
I didn't see the need in duplicating all of sys/ufs/ffs to get this
off the ground.
File creation is done through a special file - 'newfile' . When newfile
is called, the system allocates and returns an inode. Note that newfile
is done in a cloning fashion:
fd = open("newfile", O_CREAT|O_RDWR, 0644);
fstat(fd, &st);
printf("new file is %d\n", (int)st.st_ino);
Once you have created a file, you can open() and unlink() it by its returned
inode number retrieved from the stat call, ie:
fd = open("5", O_RDWR);
The creation permissions depend entirely if you have write access to the
root directory of the filesystem.
To get the list of currently allocated inodes, VOP_READDIR has been added
which returns a directory listing of those currently allocated.
--
What this entails:
* patching conf/files and conf/options to include IFS as a new compile
option (and since ifs depends upon FFS, include the FFS routines)
* An entry in i386/conf/NOTES indicating IFS exists and where to go for
an explanation
* Unstaticize a couple of routines in src/sys/ufs/ffs/ which the IFS
routines require (ffs_mount() and ffs_reload())
* a new bunch of routines in src/sys/ufs/ifs/ which implement the IFS
routines. IFS replaces some of the vfsops, and a handful of vnops -
most notably are VFS_VGET(), VOP_LOOKUP(), VOP_UNLINK() and VOP_READDIR().
Any other directory operation is marked as invalid.
What this results in:
* an IFS partition's create permissions are controlled by the perm/ownership of
the root mount point, just like a normal directory
* Each inode has perm and ownership too
* IFS does *NOT* mean an FFS partition can be opened per inode. This is a
completely seperate filesystem here
* Softupdates doesn't work with IFS, and really I don't think it needs it.
Besides, fsck's are FAST. (Try it :-)
* Inodes 0 and 1 aren't allocatable because they are special (dump/swap IIRC).
Inode 2 isn't allocatable since UFS/FFS locks all inodes in the system against
this particular inode, and unravelling THAT code isn't trivial. Therefore,
useful inodes start at 3.
Enjoy, and feedback is definitely appreciated!