module private type, when private type mutex is locked/unlocked, thread
critical region is entered or leaved. These changes makes fork()
async-signal safe which required by POSIX. Note that user's atfork handler
still needs to be async-signal safe, but it is not problem of libthr, it
is user's responsiblity.
some cases we want to improve:
1) if a thread signal got a signal while in cancellation point,
it is possible the TDP_WAKEUP may be eaten by signal handler
if the handler called some interruptibly system calls.
2) In signal handler, we want to disable cancellation.
3) When thread holding some low level locks, it is better to
disable signal, those code need not to worry reentrancy,
sigprocmask system call is avoided because it is a bit expensive.
The signal handler wrapper works in this way:
1) libthr installs its signal handler if user code invokes sigaction
to install its handler, the user handler is recorded in internal
array.
2) when a signal is delivered, libthr's signal handler is invoke,
libthr checks if thread holds some low level lock or is in critical
region, if it is true, the signal is buffered, and all signals are
masked, once the thread leaves critical region, correct signal
mask is restored and buffered signal is processed.
3) before user signal handler is invoked, cancellation is temporarily
disabled, after user signal handler is returned, cancellation state
is restored, and pending cancellation is rescheduled.
query umtx also if the shared waiters bit is set on a shared lock.
The writer starvation avoidance technique, infact, can lead to shared
waiters on a shared lock which can bring to a missed wakeup and thus
to a deadlock if the right bit is not checked (a notable case is the
writers counterpart to be handled through expired timeouts).
Fix that by checking for the shared waiters bit also when unlocking the
shared locks.
That bug was causing a reported MySQL deadlock.
Many thanks go to Nick Esborn and his employer DesertNet which provided
time and machines to identify and fix this issue.
PR: thread/135673
Reported by: Nick Esborn <nick at desert dot net>
Tested by: Nick Esborn <nick at desert dot net>
Reviewed by: jeff
locked and unlocked completely in userland. by locking and unlocking mutex
in userland, it reduces the total time a mutex is locked by a thread,
in some application code, a mutex only protects a small piece of code, the
code's execution time is less than a simple system call, if a lock contention
happens, however in current implemenation, the lock holder has to extend its
locking time and enter kernel to unlock it, the change avoids this disadvantage,
it first sets mutex to free state and then enters kernel and wake one waiter
up. This improves performance dramatically in some sysbench mutex tests.
Tested by: kris
Sounds great: jeff
1. fast simple type mutex.
2. __thread tls works.
3. asynchronous cancellation works ( using signal ).
4. thread synchronization is fully based on umtx, mainly, condition
variable and other synchronization objects were rewritten by using
umtx directly. those objects can be shared between processes via
shared memory, it has to change ABI which does not happen yet.
5. default stack size is increased to 1M on 32 bits platform, 2M for
64 bits platform.
As the result, some mysql super-smack benchmarks show performance is
improved massivly.
Okayed by: jeff, mtm, rwatson, scottl