Allow the initial hash value to be passed in, as the examples do.
Incrementally hash in the dvp->v_id (using the official api) rather than
add it. This seems to help power-of-two predictable filename trees
where the filenames repeat on a power-of-two cycle and the directory trees
have power-of-two components in it. The simple add then mask was causing
things like 12000+ entry collision chains while most other entries have
between 0 and 3 entries each. This way seems to improve things.
- Make sure that m_mballoc() really doesn't allow over nmbufs mbufs to
be allocated from mb_map. In the case where nmbufs-reserved space is not
an exact multiple of PAGE_SIZE (which it should be, but anyway...), we
hold nmbufs as an absolute maximum which need not ever be reached.
- Clean up m_clalloc(); make it more consistent in the sense that the first
argument `ncl' really means "the number of clusters ensured to be allocated"
and not "the number of pages worth of clusters to be allocated," as was
previously the case. This also makes it consistent with m_mballoc() as well
as the comment that preceeds it.
Reviewed by: jlemon
Make the name cache hash as well as the nfsnode hash use it.
As a special tweak, create an unsigned version of register_t. This allows
us to use a special tweak for the 64 bit versions that significantly
speeds up the i386 version (ie: int64 XOR int64 is slower than int64
XOR int32).
The code layout is a little strange for the string function, but I was
able to get between 5 to 10% improvement over the original version I
started with. The layout affects gcc code generation choices and this way
was fastest on x86 and alpha.
Note that 'CPUTYPE=p3' etc makes a fair difference to this. It is
around 45% faster with -march=pentiumpro on a p6 cpu.
the socket buffer size, the receive is done in sections. After completing
a read, call pru_rcvd on the underlying protocol before blocking again.
This allows the the protocol to take appropriate action, such as
sending a TCP window update to the peer, if the window happened to
close because the socket buffer was filled. If the protocol is not
notified, a TCP transfer may stall until the remote end sends a window
probe.
For UP, we were using $tmp_stk as a stack from the data section. If the
kernel text section grew beyond ~3MB, the data section would be pushed
beyond the temporary 4MB P==V mapping. This would cause the trampoline
up to high memory to fault. The hack workaround I did was to use all of
the page table pages that we already have while preparing the initial
P==V mapping, instead of just the first one.
For SMP, the AP bootstrap process suffered the same sort of problem and
got the same treatment.
MFC candidate - this breaks on 4.x just the same..
Thanks to: Richard Todd <rmtodd@ichotolot.servalan.com>
introduce a new argument, "namespace", rather than relying on a first-
character namespace indicator. This is in line with more recent
thinking on EA interfaces on various mailing lists, including the
posix1e, Linux acl-devel, and trustedbsd-discuss forums. Two namespaces
are defined by default, EXTATTR_NAMESPACE_SYSTEM and
EXTATTR_NAMESPACE_USER, where the primary distinction lies in the
access control model: user EAs are accessible based on the normal
MAC and DAC file/directory protections, and system attributes are
limited to kernel-originated or appropriately privileged userland
requests.
o These API changes occur at several levels: the namespace argument is
introduced in the extattr_{get,set}_file() system call interfaces,
at the vnode operation level in the vop_{get,set}extattr() interfaces,
and in the UFS extended attribute implementation. Changes are also
introduced in the VFS extattrctl() interface (system call, VFS,
and UFS implementation), where the arguments are modified to include
a namespace field, as well as modified to advoid direct access to
userspace variables from below the VFS layer (in the style of recent
changes to mount by adrian@FreeBSD.org). This required some cleanup
and bug fixing regarding VFS locks and the VFS interface, as a vnode
pointer may now be optionally submitted to the VFS_EXTATTRCTL()
call. Updated documentation for the VFS interface will be committed
shortly.
o In the near future, the auto-starting feature will be updated to
search two sub-directories to the ".attribute" directory in appropriate
file systems: "user" and "system" to locate attributes intended for
those namespaces, as the single filename is no longer sufficient
to indicate what namespace the attribute is intended for. Until this
is committed, all attributes auto-started by UFS will be placed in
the EXTATTR_NAMESPACE_SYSTEM namespace.
o The default POSIX.1e attribute names for ACLs and Capabilities have
been updated to no longer include the '$' in their filename. As such,
if you're using these features, you'll need to rename the attribute
backing files to the same names without '$' symbols in front.
o Note that these changes will require changes in userland, which will
be committed shortly. These include modifications to the extended
attribute utilities, as well as to libutil for new namespace
string conversion routines. Once the matching userland changes are
committed, a buildworld is recommended to update all the necessary
include files and verify that the kernel and userland environments
are in sync. Note: If you do not use extended attributes (most people
won't), upgrading is not imperative although since the system call
API has changed, the new userland extended attribute code will no longer
compile with old include files.
o Couple of minor cleanups while I'm there: make more code compilation
conditional on FFS_EXTATTR, which should recover a bit of space on
kernels running without EA's, as well as update copyright dates.
Obtained from: TrustedBSD Project
used for up to "vfs.aio.max_buf_aio" of the requests. If a request
size is MAXPHYS, but the request base isn't page aligned, vmapbuf()
will map the end of the user space buffer into the start of the kva
allocated for the next physical buffer. Don't use a physical buffer
in this case. (This change addresses problem report 25617.)
When an aio_read/write() on a raw device has completed, timeout() is
used to schedule a signal to the process. Thus, the reporting is
delayed up to 10 ms (assuming hz is 100). The process might have
terminated in the meantime, causing a trap 12 when attempting to
deliver the signal. Thus, the timeout must be cancelled when removing
the job.
aio jobs in state JOBST_JOBQGLOBAL should be removed from the
kaio_jobqueue list during process rundown.
During process rundown, some aio jobs might move from one list to a
different list that has already been "emptied", causing the rundown to
be incomplete. Retry the rundown.
A call to BUF_KERNPROC() is needed after obtaining a physical buffer
to disassociate the lock from the running process since it can return
to userland without releasing that lock.
PR: 25617
Submitted by: tegge
if we hold a spin mutex, since we can trivially get into deadlocks if we
start switching out of processes that hold spinlocks. Checking to see if
interrupts were disabled was a sort of cheap way of doing this since most
of the time interrupts were only disabled when holding a spin lock. At
least on the i386. To fix this properly, use a per-process counter
p_spinlocks that counts the number of spin locks currently held, and
instead of checking to see if interrupts are disabled in the witness code,
check to see if we hold any spin locks. Since child processes always
start up with the sched lock magically held in fork_exit(), we initialize
p_spinlocks to 1 for child processes. Note that proc0 doesn't go through
fork_exit(), so it starts with no spin locks held.
Consulting from: cp
into an interruptable sleep and we increment a sleep count, we make sure
that we are the thread that will decrement the count when we wakeup.
Otherwise, what happens is that if we get interrupted (signal) and we
have to wake up, but before we get our mutex, some thread that wants
to wake us up detects that the count is non-zero and so enters wakeup_one(),
but there's nothing on the sleep queue and so we don't get woken up. The
thread will still decrement the sleep count, which is bad because we will
also decrement it again later (as we got interrupted) and are already off
the sleep queue.
more robust. They would correctly return ENOMEM for the first time when
the buffer was exhausted, but subsequent calls in this case could cause
writes ouside of the buffer bounds.
Approved by: rwatson
structure rather than assuming that the device vnode would reside
in the FFS filesystem (which is obviously a broken assumption with
the device filesystem).
in the hopes that they will actually *read* the comment above
it and *follow* the instructions so as to cause all the rest
of us less a lot less grief.
- Don't try to grab Giant before postsig() in userret() as it is no longer
needed.
- Don't grab Giant before psignal() in ast() but get the proc lock instead.
Giant. The only exception is the CANSIGNAL() macro. Unlocking the proc
lock around sendsig() in trapsignal() is also questionable. Note that
the functions sigexit(), psignal(), and issignal() must be called with
the proc lock of the process in question held. postsig() and
trapsignal() should not be called with the proc lock held, but they
also do not require Giant anymore either.
- Remove spl's that are now no longer needed as they are fully replaced.
don't end up back at ourselves which would indicate deadlock.
- Add the proc lock to the witness dup_list as we may hold more than one
process lock at a time.
- Don't assert a mutex is owned in _mtx_unlock_sleep() as that is too late.
We do the checks in the macros instead.
mutex operations in kthread_create().
- Lock a kthread's proc before changing its parent via proc_reparent().
- Test P_KTHREAD not P_SYSTEM in kthread_suspend() and kthread_resume().
P_SYSTEM just means that the process shouldn't be swapped and is used
for vinum's daemon for example.
- Lock all the signal state used for suspending and resuming kthreads with
the proc lock.
- Add proc locking to fork1(). Always lock the child procoess (new
process) first when both processes need to be locked at the same
time.
- Remove unneeded spl()'s as the data they protected is now locked.
- Ensure that the proctree is exclusively locked and the new process is
locked when setting up the parent process pointer.
- Lock the check for P_KTHREAD in p_flag in fork_exit().
possible for us to see a process in the early stages of fork before p_fd
has been initialized. Ideally, we wouldn't stick a process on the allproc
list until it was fully created however.
than dinking around in the process lists explicitly.
- Hold both the proctree lock and proc lock of the child process when
reparenting a process via proc_reparent.
- Lock processes while sending them signals.
- Miscellaenous proc locking.
- proc_reparent() now asserts that the child is locked in addition to an
exclusive proctree lock.
INVARIANTS case, define the actual KASSERT() in _SX_ASSERT_[SX]LOCKED
macros that are used in the sx code itself and convert the
SX_ASSERT_[SX]LOCKED macros to simple wrappers that grab the mutex for the
duration of the check.
support implementations of ACLs in file systems. Introduce the
following new functions:
vaccess_acl_posix1e() vaccess() that accepts an ACL
acl_posix1e_mode_to_perm() Convert mode bits to ACL rights
acl_posix1e_mode_to_entry() Build ACL entry from mode/uid/gid
acl_posix1e_perms_to_mode() Generate file mode from ACL
acl_posix1e_check() Syntax verification for ACL
These functions allow a file system to rely on central ACL evaluation
and syntax checking, as well as providing useful utilities to
allow ACL-based file systems to generate mode/owner/etc information
to return via VOP_GETATTR(), and to support file systems that split
their ACL information over their existing inode storage (mode, uid,
gid) and extended ACL into extended attributes (additional users,
groups, ACL mask).
o Add prototypes for exported functions to sys/acl.h, sys/vnode.h
Reviewed by: trustedbsd-discuss, freebsd-arch
Obtained from: TrustedBSD Project
but potentially significant in -4.x.)
Eliminate a pointless parameter to aio_fphysio().
Remove unnecessary casts from aio_fphysio() and aio_physwakeup().
- Add sx_xholder member to sx struct which is used for INVARIANTS-enabled
assertions. It indicates the thread that presently owns the xlock.
- Add some assertions to the sx lock code that will detect the fatal
API abuse:
xlock --> xlock
xlock --> slock
which now works thanks to sx_xholder.
Notice that the remaining two problematic cases:
slock --> xlock
slock --> slock (a little less problematic, but still recursion)
will need to be handled by witness eventually, as they are more
involved.
Reviewed by: jhb, jake, jasone
aiocb's allocated by zalloc(). In other words, zfree() was never
called. Now, we call zfree(). Why eliminate this micro-
optimization? At some later point, when we multithread the AIO
system, we would need a mutex to synchronize access to aio_freejobs,
making its use nearly indistinguishable in cost from zalloc() and
zfree().
Remove unnecessary fhold() and fdrop() calls from aio_qphysio(),
undo'ing a part of revision 1.86. The reference count on the file
structure is already incremented by _aio_aqueue() before it calls
aio_qphysio(). (Update the comments to document this fact.)
Remove unnecessary casts from _aio_aqueue(), aio_read(), aio_write()
and aio_waitcomplete().
Remove an unnecessary "return;" from aio_process().
Add "static" in various places.