to protect the vlan state in each ifnet (e.g. vlan count). The latter is
probably better handled through an ifnet-centric means but since changes
are infrequent shouldn't matter for now.
Sponsored by: FreeBSD Foundation
parts of the system about certain kinds of events, like changes
in the ABR rate, changes in the carrier state, PVC changes. The
main consumers of these events are the harp(4) pseudo-driver
and the ILMI daemon via ng_atm(4).
implement the ATMIOCGVCCS ioctls. This routine handles changing
VCC tables (which can occure because we cannot hold the driver mutex
while allocating memory) with a loop and a re-allocation, should the
table not fit in the allocated memory.
from the network interface earlier in ether_input(). At some point
(no fingers pointed), things were restructured and the labeling operation
moved later. This wasn't a problem as BPF_MTAP() relies on the ifnet
label not the mbuf label, but there might have been other problems.
Obtained from: TrustedBSD Project
Sponsored by: DARPA, Network Associates Laboratories
extracted from received frames, both in the IFCAP_VLAN_HWTAGGING case
and not. (Some drivers may already do this masking internally, but
doing it here doesn't hurt and insures consistency.)
- In vlan_ioctl(), don't let the user set a VLAN ID value with anything
besides the VLID bits set, otherwise we will have trouble matching
an interface in vlan_input() later.
PR: kern/46405
insertion and extraction) has revealed two bugs:
- In vlan_start(), we're supposed to check the underlying interface to
see if it has the IFCAP_VLAN_HWTAGGING cabability set and, if so, set
things up for the VLAN_OUTPUT_TAG() routine. However the code checks
ifp->if_capabilities, which is the vlan pseudo-interface's capabilities
when it should be checking p->if_capabilities, which relates to the
underlying physical interface. Change ifp->if_capabilities to
p->if_capabilities so this works.
- In vlan_input(), we have to extract the 16-bit tag value from the
received frame and use it to figure out which vlan interface gets
the frame. The code that we use to track down the desired vlan
pseudo-interface is:
for (ifv = LIST_FIRST(&ifv_list); ifv != NULL;
ifv = LIST_NEXT(ifv, ifv_list))
if (ifp == ifv->ifv_p && tag == ifv->ifv_tag)
break;
The problem is that 'tag' is not computed consistently. In the case
where the interface supports hardware VLAN tag extraction and calls
VLAN_INPUT_TAG(), we do this:
tag = *(u_int*)(mtag+1);
But in the software emulation case, we do this
tag = EVL_VLANOFTAG(ntohs(evl->evl_tag));
The problem here is the EVL_VLANOFTAG() macro is only ever applied
in this one case. It's never applied to ifv->ifv_tag or anwhere else.
We must be consistent: either it's applied everywhere or nowhere.
To see how this can be a problem, do something like
ifconfig vlan0 vlan 12345 vlandev foo0 and observe the results.
I'm not quite sure what the right thing is to do here. Neither the
vlan(4) nor ifconfig(8) man pages suggest which way to go. For now,
I've removed this use of EVL_VLANOFTAG() so that the tag will match
correctly in all cases. I will not get upset if somebody makes a
compelling argument for using EVL_VLANOFTAG() everywhere instead,
as long as the use is consistent.
on friday 13th and without making a universe). This adds struct and
constant definitions for ATM traffic parameters and re-enables the
build of the midway driver.
Tested by: make universe
function couldn't handle chains of > MCLBYTES, and it had a bug which
caused corruption and panics in certain low mbuf situations.
Additionally, change the failure case so that looutput returns ENOBUFS
rather than attempting to pass on non-defragmented mbuf chains.
Finally, remove the printf which would happen every time the low memory
situation occured. It served no useful purpose other than to clue me
in as to what was causing the panic in question. :)
MFC after: 4 days
ILMI daemons. Factor out common softc fields for all ATM interfaces that
need to be externally visible into an ifatm structure and make the midway
driver using this structure and fill the MIB.
be changed, it is very convenient to be able to toggle SDH/Sonet,
idle/unassigned cells and scrambled mode and to see the carrier
state.
Reviewed by: -arch (if_media.h definitions)
(currently) only consumer (en).
Add a sysctl node hw.atm where the atm drivers will hook on their hardware
sysctl sub-trees.
Make atm_ifattach call if_attach and remove the corresponding call to if_attach
from en. Create atm_ifdetach and use that in en.
While the last change actually changes the interface this is not a problem in
practice because the only other consumer of this API is an older LANAI driver
on the net, that is not ready for current anyway.
Reviewed by: -atm
11a/b/g by adding an optional 3-bit mode field
o correct the spelling of OFDM (was ODFM)
o add an 802.11 subtype option for turbo mode: the phy is clocked at 2x the
normal clock rate; note this can be applied to both OFDM in 11a and OFDM
in 11g mode (and possibly DS11 in 11b for certain phy's)
o add 802.11 CCK aliases for 11b/11g rates--the more common terminology
returning some additional room in the first mbuf in a chain, and
avoiding feature-specific contents in the mbuf header. To do this:
- Modify mbuf_to_label() to extract the tag, returning NULL if not
found.
- Introduce mac_init_mbuf_tag() which does most of the work
mac_init_mbuf() used to do, except on an m_tag rather than an
mbuf.
- Scale back mac_init_mbuf() to perform m_tag allocation and invoke
mac_init_mbuf_tag().
- Replace mac_destroy_mbuf() with mac_destroy_mbuf_tag(), since
m_tag's are now GC'd deep in the m_tag/mbuf code rather than
at a higher level when mbufs are directly free()'d.
- Add mac_copy_mbuf_tag() to support m_copy_pkthdr() and related
notions.
- Generally change all references to mbuf labels so that they use
mbuf_to_label() rather than &mbuf->m_pkthdr.label. This
required no changes in the MAC policies (yay!).
- Tweak mbuf release routines to not call mac_destroy_mbuf(),
tag destruction takes care of it for us now.
- Remove MAC magic from m_copy_pkthdr() and m_move_pkthdr() --
the existing m_tag support does all this for us. Note that
we can no longer just zero the m_tag list on the target mbuf,
rather, we have to delete the chain because m_tag's will
already be hung off freshly allocated mbuf's.
- Tweak m_tag copying routines so that if we're copying a MAC
m_tag, we don't do a binary copy, rather, we initialize the
new storage and do a deep copy of the label.
- Remove use of MAC_FLAG_INITIALIZED in a few bizarre places
having to do with mbuf header copies previously.
- When an mbuf is copied in ip_input(), we no longer need to
explicitly copy the label because it will get handled by the
m_tag code now.
- No longer any weird handling of MAC labels in if_loop.c during
header copies.
- Add MPC_LOADTIME_FLAG_LABELMBUFS flag to Biba, MLS, mac_test.
In mac_test, handle the label==NULL case, since it can be
dynamically loaded.
In order to improve performance with this change, introduce the notion
of "lazy MAC label allocation" -- only allocate m_tag storage for MAC
labels if we're running with a policy that uses MAC labels on mbufs.
Policies declare this intent by setting the MPC_LOADTIME_FLAG_LABELMBUFS
flag in their load-time flags field during declaration. Note: this
opens up the possibility of post-boot policy modules getting back NULL
slot entries even though they have policy invariants of non-NULL slot
entries, as the policy might have been loaded after the mbuf was
allocated, leaving the mbuf without label storage. Policies that cannot
handle this case must be declared as NOTLATE, or must be modified.
- mac_labelmbufs holds the current cumulative status as to whether
any policies require mbuf labeling or not. This is updated whenever
the active policy set changes by the function mac_policy_updateflags().
The function iterates the list and checks whether any have the
flag set. Write access to this variable is protected by the policy
list; read access is currently not protected for performance reasons.
This might change if it causes problems.
- Add MAC_POLICY_LIST_ASSERT_EXCLUSIVE() to permit the flags update
function to assert appropriate locks.
- This makes allocation in mac_init_mbuf() conditional on the flag.
Reviewed by: sam
Obtained from: TrustedBSD Project
Sponsored by: DARPA, Network Associates Laboratories
of asserting that an mbuf has a packet header. Use it instead of hand-
rolled versions wherever applicable.
Submitted by: Hiten Pandya <hiten@unixdaemons.com>