with PCI busses. Remove nexus_read_ivar() and nexus_write_ivar()
to give default behaviour. Remove <machine/nexusvar.h> as well,
because there's nothing in it that's being used.
to ia64_enable_intr(). This reduces confusion with intr_disable() and
intr_restore().
Have configure_final() call ia64_finalize_intr() instead of enable_intr()
in preparation of adding support for binding interrupts to all CPUs.
have the BSP use IPIs to trigger clock interrupts on the APs.
This allows us to run on hardware configurations for which the
ITC has non-uniform frequencies across CPUs.
While here, change the clock XIV to type IPI so as to protect
the interrupt delivery against CPU re-balancing once that's
implemented.
to the image_params struct instead of several members of that struct
individually. This makes it easier to expand its arguments in the future
without touching all platforms.
Reviewed by: jhb
other than in a potentially dangerous KASSERT.
o Hand-inline pmap_remove_page() as it's only called from 1 place and
the abstraction that pmap_remove_page() provides is not enough to
warrant the obfuscation. Eliminate the dangerous KASSERT in the
process.
o In pmap_remove_pte(), remove the KASSERT for pmap being the current
one as it's not safe in the face of CPU migration.
than in a KASSERT. The KASSERT is broken in that it's done outside the
critical section and as such isn't protected against CPU migration.
Improve pmap_invalidate_page() as follows:
o calculate vhpt_ofs inside the critical region for exactly the same
reason.
o calculate the tag outside the FOREACH loop, as it's loop-invariant.
This is more efficient.
o Replace the test and set with an atomic cmpset operation because we
are changing other CPU's VHPT tables and this avoids invalidating
after the entry got modified. Not necessarily a problem, but better
safe than sorry.
before we grab the mutex. Don't assert that they must be disabled at
that point. We pretty much bypass all logic in that case anyway and
leave immediately, so there's no harm.
preemption doesn't happen until after all pending interrupt have
been services.
While here again, simplify the EOI handling by doing it after we
call the XIV-specific handlers, rather than in each of them. The
original thought was that we may want to do an EOI first and the
actual IPI handling next, but that's mostly a micro-optimization.
cycles. This serves 2 purposes:
1. It prevents preemption and CPU migration while running SAL code.
2. It reduces the chance of stack overflows: we're supposed to enter
SAL with at least 16KB of either memory- or register stack space,
which we can't do without switching to a different stack.
This is not for multiple inclusion purposes, because _regset.h already
handles this, but to enable inclusion of the MD header by cross-tools
on non-ia64 installations. The cross-tool can include _regset.h itself
before including MD headers that depend on it.
o Introduce XIV, eXternal Interrupt Vector, to differentiate from
the interrupts vectors that are offsets in the IVT (Interrupt
Vector Table). There's a vector for external interrupts, which
are based on the XIVs.
o Keep track of allocated and reserved XIVs so that we can assign
XIVs without hardcoding anything. When XIVs are allocated, an
interrupt handler and a class is specified for the XIV. Classes
are:
1. architecture-defined: XIV 15 is returned when no external
interrupt are pending,
2. platform-defined: SAL reports which XIV is used to wakeup
an AP (typically 0xFF, but it's 0x12 for the Altix 350).
3. inter-processor interrupts: allocated for SMP support and
non-redirectable.
4. device interrupts (i.e. IRQs): allocated when devices are
discovered and are redirectable.
o Rewrite the central interrupt handler to call the per-XIV
interrupt handler and rename it to ia64_handle_intr(). Move
the per-XIV handler implementation to the file where we have
the XIV allocation/reservation. Clock interrupt handling is
moved to clock.c. IPI handling is moved to mp_machdep.c.
o Drop support for the Intel 8259A because it was broken. When
XIV 0 is received, the CPU should initiate an INTA cycle to
obtain the interrupt vector of the 8259-based interrupt. In
these cases the interrupt controller we should be talking to
WRT to masking on signalling EOI is the 8259 and not the I/O
SAPIC. This requires adriver for the Intel 8259A which isn't
available for ia64. Thus stop pretending to support ExtINTs
and instead panic() so that if we come across hardware that
has an Intel 8259A, so have something real to work with.
o With XIVs for IPIs dynamically allocatedi and also based on
priority, define the IPI_* symbols as variables rather than
constants. The variable holds the XIV allocated for the IPI.
o IPI_STOP_HARD delivers a NMI if possible. Otherwise the XIV
assigned to IPI_STOP is delivered.
a long time and has gone unnoticed just as long, because I kept
using sched_4bsd (due to sched_ule not working with preemption),
but GENERIC had sched_ule by default -- including SMP.
While here, remove unused inclusion of <machine/clock.h>, remove
totally bogus inclusion of <i386/include/specialreg.h>.
COMPAT_43TTY enables the sgtty interface. Even though its exposure has
only been removed in FreeBSD 8.0, it wasn't used by anything in the base
system in FreeBSD 5.x (possibly even 4.x?). On those releases, if your
ports/packages are less than two years old, they will prefer termios
over sgtty.
for upcoming 64-bit PowerPC and MIPS support. This renames the COMPAT_IA32
option to COMPAT_FREEBSD32, removes some IA32-specific code from MI parts
of the kernel and enhances the freebsd32 compatibility code to support
big-endian platforms.
Reviewed by: kib, jhb
o Assign vectors based on priority, because vectors have
implied priority in hardware.
o Use unordered memory accesses to the I/O sapic and use
the acceptance form of the mf instruction.
o Remove the sapicreg.h and sapicvar.h headers. All definitions
in sapicreg.h are private to sapic.c and all definitions in
sapicvar.h are either private or interface functions. Move the
interface functions to intr.h.
o Hide the definition of struct sapic.
o Eliminate IA64_PHYS_TO_RR6 and change all places where the macro is used
by calling either bus_space_map() or pmap_mapdev().
o Implement bus_space_map() in terms of pmap_mapdev() and implement
bus_space_unmap() in terms of pmap_unmapdev().
o Have ia64_pib hold the uncached virtual address of the processor interrupt
block throughout the kernel's life and access the elements of the PIB
through this structure pointer.
This is a non-functional change with the exception of using ia64_ld1() and
ia64_st8() to write to the PIB. We were still using assignments, for which
the compiler generates semaphore reads -- which cause undefined behaviour
for uncacheable memory. Note also that the memory barriers in ipi_send() are
critical for proper functioning.
With all the mapping of uncached memory done by pmap_mapdev(), we can keep
track of the translations and wire them in the CPU. This then eliminates
the need to reserve a whole region for uncached I/O and it eliminates
translation traps for device I/O accesses.
the 'debugging' section of any HEAD kernel and enable for the mainstream
ones, excluding the embedded architectures.
It may, of course, enabled on a case-by-case basis.
Sponsored by: Sandvine Incorporated
Requested by: emaste
Discussed with: kib
path. When the taken branch leaves the kernel and enters the process,
we still need to execute the instruction at that address. Don't raise
SIGTRAP when we branch into the process, but enable single-stepping
instead.
I/O port access is implemented on Itanium by reading and writing to a
special region in memory. To hide details and avoid misaligned memory
accesses, a process did I/O port reads and writes by making a MD system
call. There's one fatal problem with this approach: unprivileged access
was not being prevented. /dev/io serves that purpose on amd64/i386, so
employ it on ia64 as well. Use an ioctl for doing the actual I/O and
remove the sysarch(2) interface.
Backward compatibility is not being considered. The sysarch(2) approach
was added to support X11, but support for FreeBSD/ia64 was never fully
implemented in X11. Thus, nothing gets broken that didn't need more work
to begin with.
MFC after: 1 week
sys/conf/makeLINT.mk to only do certain things for certain
architectures.
Note that neither arm nor mips have the Makefile there, thus
essentially not (yet) supporting LINT. This would enable them
do add special treatment to sys/conf/makeLINT.mk as well chosing
one of the many configurations as LINT.
This is a hack of doing this and keeping it in a separate commit
will allow us to more easily identify and back it out.
Discussed on/with: arch, jhb (as part of the LINT-VIMAGE thread)
MFC after: 1 month
o Optimize for memory mapped I/O by making all I/O port acceses function
calls and marking the test for the IA64_BUS_SPACE_IO tag with
__predict_false(). Implement the I/O port access functions in a new
file, called bus_machdep.c.
o Change the bus_space_handle_t for memory mapped I/O to the virtual
address rather than the physical address. This eliminates the PA->VA
translation for every I/O access. The handle for I/O port access is
still the port number.
o Move inb(), outb(), inw(), outw(), inl(), outl(), and their string
variants from cpufunc.h and define them in bus.h. On ia64 these are
not CPU functions at all. In bus.h they are merely aliases for the
new I/O port access functions defined in bus_machdep.h.
o Handle the ACPI resource bug in nexus_set_resource(). There we can
do it once so that we don't have to worry about it whenever we need
to write to an I/O port that is really a memory mapped address.
The upshot of this change is that the KBI is better defined and that I/O
port access always involves a function call, allowing us to change the
actual implementation without breaking the KBI. For memory mapped I/O the
virtual address is abstracted, so that we can change the VA->PA mapping
in the kernel without causing an KBI breakage. The exception at this time
is for bus_space_map() and bus_space_unmap().
MFC after: 1 week.
This replaces d_mmap() with the d_mmap2() implementation and also
changes the type of offset to vm_ooffset_t.
Purge d_mmap2().
All driver modules will need to be rebuilt since D_VERSION is also
bumped.
Reviewed by: jhb@
MFC after: Not in this lifetime...
Fix some wrong usages.
Note: this does not affect generated binaries as this argument is not used.
PR: 137213
Submitted by: Eygene Ryabinkin (initial version)
MFC after: 1 month
The frequencies are in MHz (i.e. a value of 1000 represents 1GHz). The
frequencies are rounded to the nearest whole MHz.
While here, rename and re-type bus_frequency, processor_frequency and
itc_frequency to bus_freq, cpu_freq and itc_freq and make them static.
As unsigned integers, the hw.freq.cpu sysctl can more easily be made
generic (across all architectures) making porting easier.
MFC after: 3 days