without ever being changed to actually work with an i8251. Nobody is
working on this either at the moment, so it's not about to change
soon.
When the code necessary to support the i8251 is committed, this can
be reverted again.
- The claim in the commit log of rev. 1.11 of dev/uart/uart_cpu_sparc64.c
etc. that UARTs are the only relevant ISA devices on sparc64 turned out
to be false. While there are sparc64 models where UARTs are the only
devices on the ISA bus there are in fact also low-cost models where all
devices traditionally found on the EBus are hooked up to the ISA bus.
There are also models that use a mix between EBus and ISA devices with
things like an AT keyboard controller and other rather interesting
devices that we might want to support in the futute hook up to the ISA
bus.
In order to not need to add sparc64 specific device_identify methods to
all of the respective ISA drivers and also not add OFW specific code to
the common ISA code make the sparc64 ISA bus code fake up PnP devices so
most ISA drivers probe their devices without further changes.
Unfortunately Sun doesn't adhere to the ISA bindings defined in IEEE
1275-1994 for the properties of most of the ISA devices which would
allow to obtain the vendor and logical IDs from their properties. So we
we just use a simple table which maps the name properties to PnP IDs.
This could be done in a more sophisticated way but I courrently don't
see the need for this. [1]
- Add the children with fully mapped and specified resources (in the OFW
sense) similar to what is done in the EBus code for the IRQ resources
of the children as adjusting the resources and the resource list entries
respectively in isa_alloc_resource() as done perviously causes trouble
with drivers which use rman_get_start(), pass-through or allocate and
release resources multiple times, etc.
Adjusting the resources might be better off in a bus_activate_resource
method but the common ISA code currently doesn't allow for an
isa_activate_resource(). [2]
With this change:
- ppbus(4) and lpt(4) attach and work (modulo ECP mode, which requires
real ISADMA code but it currently only consists of stubs on sparc64).
- atkbdc(4) and atkbdc(4) attach, no further testing done.
- fdc(4) itself attaches but causes a hang while attaching fd0 also
when is DMA disabled, further work in fdc(4) is required here as e.g.
fd0 uses the address of fd1 on sparc64 (not sure if sparc64 supports
more than one floppy drive at all).
All of these drivers previously caused panics in the sparc64 ISA code.
- Minor changes, e.g. use __FBSDID, remove a dupe word in a comment and
declare one global variable which isn't used outside of isa.c static.
o dev/uart/uart_cpu_sparc64.c and modules/uart/Makefile:
- Remove the code for registering the UARTs on the ISA bus from the
sparc64 uart_cpu_identify() again and rely on probing them via PnP.
Original idea by: tmm [1]
No objections by: tmm [1], [2]
i386 to dev/acpi_support. In theory, these devices could be found
other than in i386 machines only as amd64 becomes more popular. These
drivers don't appear to do anything i386 specific, so move them to
dev/acpi_support. Move config lines to files so that those
architectures that don't support kernel modules can build them into
the kernel. At the same time, rename acpi_snc to acpi_sony to follow
the lead of all the other specialty devices.
the tree. Small tweaks were made by myself to eliminate unnecessary
includes and some other minor issues. Last time I asked takawata-san
about this driver, he suggested I commit it.
Submitted by: takawata
on UltraSPARC workstations. The driver is based on OpenBSD's SBus
cs4231 driver and heavily modified to incorporate into sound(4)
infrastructure. Due to the lack of APCDMA documentation, the DMA
code of SBus cs4231 came from OpenBSD's driver.
The driver runs without Giant lock and supports both SBus and EBus
based CS4231 audio controller. Special thanks to marius for providing
feedbacks during the driver writing. His feedback made it possible
to write hiccup free playback code under high system loads.
Approved by: jake (mentor)
Reviewed by: marius (initial version)
Tested by: marius, kwm, Julian C. Dunn(jdunn AT opentrend DOT net)
of protocols. The call to divert_packet() is done through a function pointer. All
semantics of IPDIVERT remain intact. If IPDIVERT is not loaded ipfw will refuse to
install divert rules and natd will complain about 'protocol not supported'. Once
it is loaded both will work and accept rules and open the divert socket. The module
can only be unloaded if no divert sockets are open. It does not close any divert
sockets when an unload is requested but will return EBUSY instead.
List of functional changes:
- Make a single device per single node with a single hook.
This gives us parrallelizm, which can't be achieved on a single
node with many devices/hooks. This also gives us flexibility - we
can play with a particular device node, not affecting others.
- Remove read queue as it is. Use struct ifqueue instead. This change
removes a lot of extra memcpy()ing, m_devget()ting and m_copymem()ming.
In ng_device_receivedata() we enqueue an mbuf and wake readers.
In ngdread() we take one mbuf from qeueue and uiomove() it to
userspace. If no mbuf is present we optionally block. [1]
- In ngdwrite() we create an mbuf from uio using m_uiotombuf().
This is faster then uiomove() into buffer, and then m_copydata(),
and this is much better than huge m_pullup().
- Perform locking of device
- Perform locking of connection list.
- Clear out _rcvmsg method, since it does nothing good yet.
- Implement NGM_DEVICE_GET_DEVNAME message.
- #if 0 ioctl method, while nothing is done here yet.
- Return immediately from ngdwrite() if uio_resid == 0.
List of tidyness changes:
- Introduce device2priv(), to remove cut'n'paste.
- Use MALLOC/FREE, instead of malloc/free.
- Use unit2minor().
- Use UID_ROOT/GID_WHEEL instead of 0/0.
- Define NGD_DEVICE_DEVNAME, use it.
- Use more nice macros for debugging. [2]
- Return Exxx, not -1.
style(9) changes:
- No "#endif" after short block.
- Break long lines.
- Remove extra spaces, add needed spaces.
[1] Obtained from: if_tun.c
[2] Obtained from: ng_pppoe.c
Reviewed by: marks
Approved by: julian (mentor)
MFC after: 1 month
be used to announce various system activity.
The auxio device provides auxiliary I/O functions and is found on various
SBus/EBus UltraSPARC models. At present, only front panel LED is
controlled by this driver.
Approved by: jake (mentor)
Reviewed by: joerg
Tested by: joerg
Users should move to the new geom_vinum implementation instead.
The refcount logic which is being added to devices to enable safe module
unloading and the buf/vm work also in progress would require a major rework
of the (old)-vinum code to comply with the new semantics.
The actual source files will not be removed until I have coordinated with
the geomvinum people if they need any bits repo-copied etc.
VT6122 gigabit ethernet chip and integrated 10/100/1000 copper PHY.
The vge driver has been added to GENERIC for i386, pc98 and amd64,
but not to sparc or ia64 since I don't have the ability to test
it there. The vge(4) driver supports VLANs, checksum offload and
jumbo frames.
Also added the lge(4) and nge(4) drivers to GENERIC for i386 and
pc98 since I was in the neighborhood. There's no reason to leave them
out anymore.
to RS232 bridges, such as the one found in the DeLorme Earthmate USB GPS
receiver (which is the only device currently supported by this driver).
While other USB to serial drivers in the tree rely heavily on ucom, this
one is self-contained. The reason for that is that ucom assumes that
the bridge uses bulk pipes for I/O, while the Cypress parts actually
register as human interface devices and use HID reports for configuration
and I/O.
The driver is not entirely complete: there is no support yet for flow
control, and output doesn't seem to work, though I don't know if that is
because of a bug in the code, or simply because the Earthmate is a read-
only device.