buffer for the last vnode on the mount back to the server, it
returns. At that point, the code continues with the unmount,
including freeing up the nfs specific part of the mount structure.
It is possible that an nfsiod thread will try to check for an
empty I/O queue in the nfs specific part of the mount structure
after it has been free'd by the unmount. This patch avoids this problem by
setting the iodmount entries for the mount back to NULL while holding the
mutex in the unmount and checking the appropriate entry is non-NULL after
acquiring the mutex in the nfsiod thread.
Reported and tested by: pho
Reviewed by: kib
MFC after: 2 weeks
option. This can occur when an nfsiod thread that already holds
a buffer lock attempts to acquire a vnode lock on an entry in
the directory (a LOR) when another thread holding the vnode lock
is waiting on an nfsiod thread. This patch avoids the deadlock by disabling
readahead for this case, so the nfsiod threads never do readdirplus.
Since readaheads for directories need the directory offset cookie
from the previous read, they cannot normally happen in parallel.
As such, testing by jhb@ and myself didn't find any performance
degredation when this patch is applied. If there is a case where
this results in a significant performance degradation, mounting
without the "rdirplus" option can be done to re-enable readahead
for directories.
Reported and tested by: jhb
Reviewed by: jhb
MFC after: 2 weeks
it will work with either the old or new server.
The FHA code keeps a cache of currently active file handles for
NFSv2 and v3 requests, so that read and write requests for the same
file are directed to the same group of threads (reads) or thread
(writes). It does not currently work for NFSv4 requests. They are
more complex, and will take more work to support.
This improves read-ahead performance, especially with ZFS, if the
FHA tuning parameters are configured appropriately. Without the
FHA code, concurrent reads that are part of a sequential read from
a file will be directed to separate NFS threads. This has the
effect of confusing the ZFS zfetch (prefetch) code and makes
sequential reads significantly slower with clients like Linux that
do a lot of prefetching.
The FHA code has also been updated to direct write requests to nearby
file offsets to the same thread in the same way it batches reads,
and the FHA code will now also send writes to multiple threads when
needed.
This improves sequential write performance in ZFS, because writes
to a file are now more ordered. Since NFS writes (generally
less than 64K) are smaller than the typical ZFS record size
(usually 128K), out of order NFS writes to the same block can
trigger a read in ZFS. Sending them down the same thread increases
the odds of their being in order.
In order for multiple write threads per file in the FHA code to be
useful, writes in the NFS server have been changed to use a LK_SHARED
vnode lock, and upgrade that to LK_EXCLUSIVE if the filesystem
doesn't allow multiple writers to a file at once. ZFS is currently
the only filesystem that allows multiple writers to a file, because
it has internal file range locking. This change does not affect the
NFSv4 code.
This improves random write performance to a single file in ZFS, since
we can now have multiple writers inside ZFS at one time.
I have changed the default tuning parameters to a 22 bit (4MB)
window size (from 256K) and unlimited commands per thread as a
result of my benchmarking with ZFS.
The FHA code has been updated to allow configuring the tuning
parameters from loader tunable variables in addition to sysctl
variables. The read offset window calculation has been slightly
modified as well. Instead of having separate bins, each file
handle has a rolling window of bin_shift size. This minimizes
glitches in throughput when shifting from one bin to another.
sys/conf/files:
Add nfs_fha_new.c and nfs_fha_old.c. Compile nfs_fha.c
when either the old or the new NFS server is built.
sys/fs/nfs/nfsport.h,
sys/fs/nfs/nfs_commonport.c:
Bring in changes from Rick Macklem to newnfs_realign that
allow it to operate in blocking (M_WAITOK) or non-blocking
(M_NOWAIT) mode.
sys/fs/nfs/nfs_commonsubs.c,
sys/fs/nfs/nfs_var.h:
Bring in a change from Rick Macklem to allow telling
nfsm_dissect() whether or not to wait for mallocs.
sys/fs/nfs/nfsm_subs.h:
Bring in changes from Rick Macklem to create a new
nfsm_dissect_nonblock() inline function and
NFSM_DISSECT_NONBLOCK() macro.
sys/fs/nfs/nfs_commonkrpc.c,
sys/fs/nfsclient/nfs_clkrpc.c:
Add the malloc wait flag to a newnfs_realign() call.
sys/fs/nfsserver/nfs_nfsdkrpc.c:
Setup the new NFS server's RPC thread pool so that it will
call the FHA code.
Add the malloc flag argument to newnfs_realign().
Unstaticize newnfs_nfsv3_procid[] so that we can use it in
the FHA code.
sys/fs/nfsserver/nfs_nfsdsocket.c:
In nfsrvd_dorpc(), add NFSPROC_WRITE to the list of RPC types
that use the LK_SHARED lock type.
sys/fs/nfsserver/nfs_nfsdport.c:
In nfsd_fhtovp(), if we're starting a write, check to see
whether the underlying filesystem supports shared writes.
If not, upgrade the lock type from LK_SHARED to LK_EXCLUSIVE.
sys/nfsserver/nfs_fha.c:
Remove all code that is specific to the NFS server
implementation. Anything that is server-specific is now
accessed through a callback supplied by that server's FHA
shim in the new softc.
There are now separate sysctls and tunables for the FHA
implementations for the old and new NFS servers. The new
NFS server has its tunables under vfs.nfsd.fha, the old
NFS server's tunables are under vfs.nfsrv.fha as before.
In fha_extract_info(), use callouts for all server-specific
code. Getting file handles and offsets is now done in the
individual server's shim module.
In fha_hash_entry_choose_thread(), change the way we decide
whether two reads are in proximity to each other.
Previously, the calculation was a simple shift operation to
see whether the offsets were in the same power of 2 bucket.
The issue was that there would be a bucket (and therefore
thread) transition, even if the reads were in close
proximity. When there is a thread transition, reads wind
up going somewhat out of order, and ZFS gets confused.
The new calculation simply tries to see whether the offsets
are within 1 << bin_shift of each other. If they are, the
reads will be sent to the same thread.
The effect of this change is that for sequential reads, if
the client doesn't exceed the max_reqs_per_nfsd parameter
and the bin_shift is set to a reasonable value (22, or
4MB works well in my tests), the reads in any sequential
stream will largely be confined to a single thread.
Change fha_assign() so that it takes a softc argument. It
is now called from the individual server's shim code, which
will pass in the softc.
Change fhe_stats_sysctl() so that it takes a softc
parameter. It is now called from the individual server's
shim code. Add the current offset to the list of things
printed out about each active thread.
Change the num_reads and num_writes counters in the
fha_hash_entry structure to 32-bit values, and rename them
num_rw and num_exclusive, respectively, to reflect their
changed usage.
Add an enable sysctl and tunable that allows the user to
disable the FHA code (when vfs.XXX.fha.enable = 0). This
is useful for before/after performance comparisons.
nfs_fha.h:
Move most structure definitions out of nfs_fha.c and into
the header file, so that the individual server shims can
see them.
Change the default bin_shift to 22 (4MB) instead of 18
(256K). Allow unlimited commands per thread.
sys/nfsserver/nfs_fha_old.c,
sys/nfsserver/nfs_fha_old.h,
sys/fs/nfsserver/nfs_fha_new.c,
sys/fs/nfsserver/nfs_fha_new.h:
Add shims for the old and new NFS servers to interface with
the FHA code, and callbacks for the
The shims contain all of the code and definitions that are
specific to the NFS servers.
They setup the server-specific callbacks and set the server
name for the sysctl and loader tunable variables.
sys/nfsserver/nfs_srvkrpc.c:
Configure the RPC code to call fhaold_assign() instead of
fha_assign().
sys/modules/nfsd/Makefile:
Add nfs_fha.c and nfs_fha_new.c.
sys/modules/nfsserver/Makefile:
Add nfs_fha_old.c.
Reviewed by: rmacklem
Sponsored by: Spectra Logic
MFC after: 2 weeks
locked. vnode_pager_setsize() might sleep waiting for the page after
EOF be unbusied.
Call vnode_pager_setsize() both for the regular and directory vnodes.
Reported by: mich
Reviewed by: rmacklem
Discussed with: avg, jhb
MFC after: 2 weeks
In common configurations biosize is a power of two, but is not required to
be so. Thanks to markj@ for spotting an additional case beyond my original
patch.
Reviewed by: rmacklem@
future further optimizations where the vm_object lock will be held
in read mode most of the time the page cache resident pool of pages
are accessed for reading purposes.
The change is mostly mechanical but few notes are reported:
* The KPI changes as follow:
- VM_OBJECT_LOCK() -> VM_OBJECT_WLOCK()
- VM_OBJECT_TRYLOCK() -> VM_OBJECT_TRYWLOCK()
- VM_OBJECT_UNLOCK() -> VM_OBJECT_WUNLOCK()
- VM_OBJECT_LOCK_ASSERT(MA_OWNED) -> VM_OBJECT_ASSERT_WLOCKED()
(in order to avoid visibility of implementation details)
- The read-mode operations are added:
VM_OBJECT_RLOCK(), VM_OBJECT_TRYRLOCK(), VM_OBJECT_RUNLOCK(),
VM_OBJECT_ASSERT_RLOCKED(), VM_OBJECT_ASSERT_LOCKED()
* The vm/vm_pager.h namespace pollution avoidance (forcing requiring
sys/mutex.h in consumers directly to cater its inlining functions
using VM_OBJECT_LOCK()) imposes that all the vm/vm_pager.h
consumers now must include also sys/rwlock.h.
* zfs requires a quite convoluted fix to include FreeBSD rwlocks into
the compat layer because the name clash between FreeBSD and solaris
versions must be avoided.
At this purpose zfs redefines the vm_object locking functions
directly, isolating the FreeBSD components in specific compat stubs.
The KPI results heavilly broken by this commit. Thirdy part ports must
be updated accordingly (I can think off-hand of VirtualBox, for example).
Sponsored by: EMC / Isilon storage division
Reviewed by: jeff
Reviewed by: pjd (ZFS specific review)
Discussed with: alc
Tested by: pho
- Capability is no longer separate descriptor type. Now every descriptor
has set of its own capability rights.
- The cap_new(2) system call is left, but it is no longer documented and
should not be used in new code.
- The new syscall cap_rights_limit(2) should be used instead of
cap_new(2), which limits capability rights of the given descriptor
without creating a new one.
- The cap_getrights(2) syscall is renamed to cap_rights_get(2).
- If CAP_IOCTL capability right is present we can further reduce allowed
ioctls list with the new cap_ioctls_limit(2) syscall. List of allowed
ioctls can be retrived with cap_ioctls_get(2) syscall.
- If CAP_FCNTL capability right is present we can further reduce fcntls
that can be used with the new cap_fcntls_limit(2) syscall and retrive
them with cap_fcntls_get(2).
- To support ioctl and fcntl white-listing the filedesc structure was
heavly modified.
- The audit subsystem, kdump and procstat tools were updated to
recognize new syscalls.
- Capability rights were revised and eventhough I tried hard to provide
backward API and ABI compatibility there are some incompatible changes
that are described in detail below:
CAP_CREATE old behaviour:
- Allow for openat(2)+O_CREAT.
- Allow for linkat(2).
- Allow for symlinkat(2).
CAP_CREATE new behaviour:
- Allow for openat(2)+O_CREAT.
Added CAP_LINKAT:
- Allow for linkat(2). ABI: Reuses CAP_RMDIR bit.
- Allow to be target for renameat(2).
Added CAP_SYMLINKAT:
- Allow for symlinkat(2).
Removed CAP_DELETE. Old behaviour:
- Allow for unlinkat(2) when removing non-directory object.
- Allow to be source for renameat(2).
Removed CAP_RMDIR. Old behaviour:
- Allow for unlinkat(2) when removing directory.
Added CAP_RENAMEAT:
- Required for source directory for the renameat(2) syscall.
Added CAP_UNLINKAT (effectively it replaces CAP_DELETE and CAP_RMDIR):
- Allow for unlinkat(2) on any object.
- Required if target of renameat(2) exists and will be removed by this
call.
Removed CAP_MAPEXEC.
CAP_MMAP old behaviour:
- Allow for mmap(2) with any combination of PROT_NONE, PROT_READ and
PROT_WRITE.
CAP_MMAP new behaviour:
- Allow for mmap(2)+PROT_NONE.
Added CAP_MMAP_R:
- Allow for mmap(PROT_READ).
Added CAP_MMAP_W:
- Allow for mmap(PROT_WRITE).
Added CAP_MMAP_X:
- Allow for mmap(PROT_EXEC).
Added CAP_MMAP_RW:
- Allow for mmap(PROT_READ | PROT_WRITE).
Added CAP_MMAP_RX:
- Allow for mmap(PROT_READ | PROT_EXEC).
Added CAP_MMAP_WX:
- Allow for mmap(PROT_WRITE | PROT_EXEC).
Added CAP_MMAP_RWX:
- Allow for mmap(PROT_READ | PROT_WRITE | PROT_EXEC).
Renamed CAP_MKDIR to CAP_MKDIRAT.
Renamed CAP_MKFIFO to CAP_MKFIFOAT.
Renamed CAP_MKNODE to CAP_MKNODEAT.
CAP_READ old behaviour:
- Allow pread(2).
- Disallow read(2), readv(2) (if there is no CAP_SEEK).
CAP_READ new behaviour:
- Allow read(2), readv(2).
- Disallow pread(2) (CAP_SEEK was also required).
CAP_WRITE old behaviour:
- Allow pwrite(2).
- Disallow write(2), writev(2) (if there is no CAP_SEEK).
CAP_WRITE new behaviour:
- Allow write(2), writev(2).
- Disallow pwrite(2) (CAP_SEEK was also required).
Added convinient defines:
#define CAP_PREAD (CAP_SEEK | CAP_READ)
#define CAP_PWRITE (CAP_SEEK | CAP_WRITE)
#define CAP_MMAP_R (CAP_MMAP | CAP_SEEK | CAP_READ)
#define CAP_MMAP_W (CAP_MMAP | CAP_SEEK | CAP_WRITE)
#define CAP_MMAP_X (CAP_MMAP | CAP_SEEK | 0x0000000000000008ULL)
#define CAP_MMAP_RW (CAP_MMAP_R | CAP_MMAP_W)
#define CAP_MMAP_RX (CAP_MMAP_R | CAP_MMAP_X)
#define CAP_MMAP_WX (CAP_MMAP_W | CAP_MMAP_X)
#define CAP_MMAP_RWX (CAP_MMAP_R | CAP_MMAP_W | CAP_MMAP_X)
#define CAP_RECV CAP_READ
#define CAP_SEND CAP_WRITE
#define CAP_SOCK_CLIENT \
(CAP_CONNECT | CAP_GETPEERNAME | CAP_GETSOCKNAME | CAP_GETSOCKOPT | \
CAP_PEELOFF | CAP_RECV | CAP_SEND | CAP_SETSOCKOPT | CAP_SHUTDOWN)
#define CAP_SOCK_SERVER \
(CAP_ACCEPT | CAP_BIND | CAP_GETPEERNAME | CAP_GETSOCKNAME | \
CAP_GETSOCKOPT | CAP_LISTEN | CAP_PEELOFF | CAP_RECV | CAP_SEND | \
CAP_SETSOCKOPT | CAP_SHUTDOWN)
Added defines for backward API compatibility:
#define CAP_MAPEXEC CAP_MMAP_X
#define CAP_DELETE CAP_UNLINKAT
#define CAP_MKDIR CAP_MKDIRAT
#define CAP_RMDIR CAP_UNLINKAT
#define CAP_MKFIFO CAP_MKFIFOAT
#define CAP_MKNOD CAP_MKNODAT
#define CAP_SOCK_ALL (CAP_SOCK_CLIENT | CAP_SOCK_SERVER)
Sponsored by: The FreeBSD Foundation
Reviewed by: Christoph Mallon <christoph.mallon@gmx.de>
Many aspects discussed with: rwatson, benl, jonathan
ABI compatibility discussed with: kib
changes in r246417 were incomplete as they did not add explicit calls to
sigdeferstop() around all the places that previously passed SBDRY to
_sleep(). In addition, nfs_getcacheblk() could trigger a write RPC from
getblk() resulting in sigdeferstop() recursing. Rather than manually
deferring stop signals in specific places, change the VFS_*() and VOP_*()
methods to defer stop signals for filesystems which request this behavior
via a new VFCF_SBDRY flag. Note that this has to be a VFC flag rather than
a MNTK flag so that it works properly with VFS_MOUNT() when the mount is
not yet fully constructed. For now, only the NFS clients are set this new
flag in VFS_SET().
A few other related changes:
- Add an assertion to ensure that TDF_SBDRY doesn't leak to userland.
- When a lookup request uses VOP_READLINK() to follow a symlink, mark
the request as being on behalf of the thread performing the lookup
(cnp_thread) rather than using a NULL thread pointer. This causes
NFS to properly handle signals during this VOP on an interruptible
mount.
PR: kern/176179
Reported by: Russell Cattelan (sigdeferstop() recursion)
Reviewed by: kib
MFC after: 1 month
requested from the server for the read operation. Server shall not
reply with too large size, but client should be resilent too.
Reviewed by: rmacklem
MFC after: 1 week
- Use NFSD_MONOSEC (which maps to time_uptime) instead of the seconds
portion of wall-time stamps to manage timeouts on events.
- Remove unused nd_starttime from the per-request structure in the new
NFS server.
- Use nanotime() for the modification time on a delegation to get as
precise a time as possible.
- Use time_second instead of extracting the second from a call to
getmicrotime().
Submitted by: bde (3)
Reviewed by: bde, rmacklem
MFC after: 2 weeks
to head. I don't think the NFS client behaviour will change unless
the new "minorversion=1" mount option is used. It includes basic
NFSv4.1 support plus support for pNFS using the Files Layout only.
All problems detecting during an NFSv4.1 Bakeathon testing event
in June 2012 have been resolved in this code and it has been tested
against the NFSv4.1 server available to me.
Although not reviewed, I believe that kib@ has looked at it.
which dumps out the actual options being used by an NFS mount.
This will be used to implement a "-m" option for nfsstat(1).
Reviewed by: alfred
MFC after: 2 weeks
received granular locking) but the comment present in UFS has been
copied all over other filesystems code incorrectly for several times.
Removes comments that makes no sense now.
Reviewed by: kib
MFC after: 3 days
zombie list for the pid. This allows several kern.proc sysctls to
report useful information for zombies.
Hold the allproc_lock around all searches instead of relocking it.
Remove private pfind_locked() from the new nfs client code.
Requested and reviewed by: pjd
Tested by: pho
MFC after: 3 weeks
and owner_group strings that consist entirely of
digits, interpreting them as the uid/gid number.
This change was needed since new (>= 3.3) Linux
servers reply with these strings by default.
This change is mandated by the rfc3530bis draft.
Reported on freebsd-stable@ under the Subject
heading "Problem with Linux >= 3.3 as NFSv4 server"
by Norbert Aschendorff on Aug. 20, 2012.
Tested by: norbert.aschendorff at yahoo.de
Reviewed by: jhb
MFC after: 2 weeks
Use it for a printf() that can be harmlessly generated for mmap()'d
files. It will be used extensively for the NFSv4.1 client.
Debugging printf()s are enabled by setting vfs.nfs.debuglevel to
a non-zero value. The higher the value, the more debugging printf()s.
Reviewed by: jhb
MFC after: 2 weeks
network file systems (not only NFS proper). Short reads cause pages
other then the requested one, which were not filled by read response,
to stay invalid.
Change the vm_page_readahead_finish() interface to not take the error
code, but instead to make a decision to free or to (de)activate the
page only by its validity. As result, not requested invalid pages are
freed even if the read RPC indicated success.
Noted and reviewed by: alc
MFC after: 1 week
to pull vm_param.h was removed. Other big dependency of vm_page.h on
vm_param.h are PA_LOCK* definitions, which are only needed for
in-kernel code, because modules use KBI-safe functions to lock the
pages.
Stop including vm_param.h into vm_page.h. Include vm_param.h
explicitely for the kernel code which needs it.
Suggested and reviewed by: alc
MFC after: 2 weeks
vm_page oflags by providing helper function
vm_page_readahead_finish(), which handles completed reads for pages
with indexes other then the requested one, for VOP_GETPAGES().
Reviewed by: alc
MFC after: 1 week
bwrite(). VFS needs to know about EFAULT from uiomove() and does not
care much that partially filled block writeback after EFAULT was
successfull. Early return without error causes short write to be
reported to usermode.
Reported and tested by: andreast
MFC after: 3 weeks
written, but not msync'd by a process. A VOP_PUTPAGES()
called when VOP_RECLAIM() happens will usually fail, since
the NFSv4 Open has already been closed by VOP_INACTIVE().
Add a vm_object_page_clean() call to the NFSv4 client's
VOP_INACTIVE(), so that the write happens before the NFSv4
Open is closed. kib@ suggested using vgone() instead and
I will explore this, but this patch fixes things in the
meantime. For some reason, the VOP_PUTPAGES() is still
attaempted in VOP_RECLAIM(), but having this fail doesn't
cause any problems except a "stateid0 in write" being logged.
Reviewed by: kib
MFC after: 1 week
Do not brelse() the buffer unconditionally with BIO_ERROR set if
uiomove() failed. The brelse() treats most buffers with BIO_ERROR as
B_INVAL, dropping their content. Instead, if the write request
covered the whole buffer, remember the cached state and brelse() with
BIO_ERROR set only if the buffer was not cached previously.
Update the buffer dirtyoff/dirtyend based on the progress recorded by
uiomove() in passed struct uio, even in the presence of
error. Otherwise, usermode could see changed data in the backed pages,
but later the buffer is destroyed without write-back.
If uiomove() failed for IO_UNIT request, try to truncate the vnode
back to the pre-write state, and rewind the progress in passed uio
accordingly, following the FFS behaviour.
Reviewed by: rmacklem (some time ago)
Tested by: pho
MFC after: 1 month
memory mapped pages being written back on an NFS mount.
Since any thread can call VOP_PUTPAGES() to write back a
dirty page, the credentials of that thread may not have
write access to the file on an NFS server. (Often the uid
is 0, which may be mapped to "nobody" in the NFS server.)
Although there is no completely correct fix for this
(NFS servers check access on every write RPC instead of at
open/mmap time), this patch avoids the common cases by
holding onto a credential that recently opened the file
for writing and uses that credential for the write RPCs
being done by VOP_PUTPAGES() for both NFS clients.
Tested by: Joel Ray Holveck (joelh at juniper.net)
PR: kern/165923
Reviewed by: kib
MFC after: 2 weeks
do not include file attributes in the reply to an NFS create RPC
under certain circumstances.
This resulted in a vnode of type VNON that was not usable.
This patch adds an NFS getattr RPC to nfs_create() for this case,
to fix the problem. It was tested by the person that reported
the problem and confirmed to fix this case for their server.
Tested by: Steven Haber (steven.haber at isilon.com)
MFC after: 2 weeks
The primary changes are that the user of the interface no longer
needs to manage the mount-mutex locking and that the vnode that
is returned has its mutex locked (thus avoiding the need to check
to see if its is DOOMED or other possible end of life senarios).
To minimize compatibility issues for third-party developers, the
old MNT_VNODE_FOREACH interface will remain available so that this
change can be MFC'ed to 9. Following the MFC to 9, MNT_VNODE_FOREACH
will be removed in head.
The reason for this update is to prepare for the addition of the
MNT_VNODE_FOREACH_ACTIVE interface that will loop over just the
active vnodes associated with a mount point (typically less than
1% of the vnodes associated with the mount point).
Reviewed by: kib
Tested by: Peter Holm
MFC after: 2 weeks
behaviour on error from write RPC back to behaviour of old nfs client.
When set to not zero, the pages for which write failed are kept dirty.
PR: kern/165927
Reviewed by: alc
MFC after: 2 weeks
significantly. Upon investigation this was caused by name cache
misses for lookups of "..". For name cache entries for non-".."
directories, the cache entry serves double duty. It maps both the
named directory plus ".." for the parent of the directory. As such,
two ctime values (one for each of the directory and its parent) need
to be saved in the name cache entry.
This patch adds an entry for ctime of the parent directory to the
name cache. It also adds an additional uma zone for large entries
with this time value, in order to minimize memory wastage.
As well, it fixes a couple of cases where the mtime of the parent
directory was being saved instead of ctime for positive name cache
entries. With this patch, Lookup RPC counts return to values similar
to pre-r230394 kernels.
Reported by: bde
Discussed with: kib
Reviewed by: jhb
MFC after: 2 weeks
Add the sysctl debug.iosize_max_clamp, enabled by default. Setting the
sysctl to zero allows to perform the SSIZE_MAX-sized i/o requests from
the usermode.
Discussed with: bde, das (previous versions)
MFC after: 1 month
a credential structure would corrupt it. This happened when the
p argument was != NULL. However, I now realize that the copying of
open credentials should only happen for p == NULL, since that indicates
that it is a read-ahead or write-behind. This patch fixes this.
After this commit, r228827 could be reverted, but I think the code is
clearer and safer with the patch, so I am going to leave it in.
Without this patch, it was possible that a NFSv4 VOP_SETATTR() could have
changed the credentials of the caller. This would have happened if
the process doing the VOP_SETATTR() did not have the file open, but
some other process running as a different uid had the file open for writing
at the same time.
MFC after: 5 days
mnt_noasync counter to temporary remove MNTK_ASYNC mount option, which
is needed to guarantee a synchronous completion of the initiated i/o
before syscall or VOP return. Global removal of MNTK_ASYNC option is
harmful because not only i/o started from corresponding thread becomes
synchronous, but all i/o is synchronous on the filesystem which is
initiated during sync(2) or syncer activity.
Instead of removing MNTK_ASYNC from mnt_kern_flag, provide a local
thread flag to disable async i/o for current thread only. Use the
opportunity to move DOINGASYNC() macro into sys/vnode.h and
consistently use it through places which tested for MNTK_ASYNC.
Some testing demonstrated 60-70% improvements in run time for the
metadata-intensive operations on async-mounted UFS volumes, but still
with great deviation due to other reasons.
Reviewed by: mckusick
Tested by: scottl
MFC after: 2 weeks
the original IPv4 implementation from r178888:
- Use RT_DEFAULT_FIB in the IPv4 implementation where noticed.
- Use rt*fib() KPI with explicit RT_DEFAULT_FIB where applicable in
the NFS code.
- Use the new in6_rt* KPI in TCP, gif(4), and the IPv6 network stack
where applicable.
- Split in6_rtqtimo() and in6_mtutimo() as done in IPv4 and equally
prevent multiple initializations of callouts in in6_inithead().
- Use wrapper functions where needed to preserve the current KPI to
ease MFCs. Use BURN_BRIDGES to indicate expected future cleanup.
- Fix (related) comments (both technical or style).
- Convert to rtinit() where applicable and only use custom loops where
currently not possible otherwise.
- Multicast group, most neighbor discovery address actions and faith(4)
are locked to the default FIB. Individual IPv6 addresses will only
appear in the default FIB, however redirect information and prefixes
of connected subnets are automatically propagated to all FIBs by
default (mimicking IPv4 behavior as closely as possible).
Sponsored by: Cisco Systems, Inc.
any thread doing an I/O RPC with a transfer size greater than
NFS_UDPMAXDATA will be hung indefinitely, retrying the RPC.
After a discussion on freebsd-fs@, I decided to add a warning
message for this case, as suggested by Jeremy Chadwick.
Suggested by: freebsd at jdc.parodius.com (Jeremy Chadwick)
MFC after: 2 weeks
NFS clients was reported to freebsd-fs@ under the subject "NFS
corruption in recent HEAD" on Nov. 26, 2011. This problem occurred when
a TCP mounted root fs was changed to using UDP. I believe that this
problem was caused by the change in mnt_stat.f_iosize that occurred
because rsize was decreased to the maximum supported by UDP. This
patch fixes the problem by using v_bufobj.bo_bsize instead of f_iosize,
since the latter is set to f_iosize when the vnode is allocated, but
does not change for a given vnode when f_iosize changes.
Reported by: pjd
Reviewed by: kib
MFC after: 2 weeks