The change implements cexpl() for both ld80 and ld128 architectures.
Testing was done on x86_64 and aarch64 systems.
Along the way sincos[fl]() use an optimization that reduces the argument
to being done one rather than twice. This optimization actually pointed
to a bug in the ld128 version of sincosl(), which is now fixed. In
addition, the minmax polynomial coefficients for sincosl() have been
updated.
A concise log of the file-by-file changes follows.
* include/complex.h:
. Add a prototype for cexpl().
* lib/msun/Makefile:
. Add s_cexpl.c to the build.
. Setup a link for cexpl.3 to cexp.3.
* lib/msun/Symbol.map:
. Expose cexpl symbol in libm shared library.
* lib/msun/ld128/s_cexpl.c:
* Implementation of cexpl() for 128-bit long double architectures.
Tested on an aarch64 system.
* lib/msun/ld80/s_cexpl.c:
* Implementation of cexpl() for Intel 80-bit long double.
* lib/msun/man/cexp.3:
. Document cexpl().
* lib/msun/man/complex.3:
. Add a BUGS section about cpow[fl].
* lib/msun/src/s_cexp.c:
. Include float.h for weak references on 53-bit long double targets.
. Use sincos() to reduce argument reduction cost.
* lib/msun/src/s_cexpf.c:
. Use sincosf() to reduce argument reduction cost.
* lib/msun/src/k_sincosl.h:
. Catch up with the new minmax polynomial coefficients for the kernel for
the 128-bit cosl() implementation.
. BUG FIX: *cs was used where *sn should have been. This means that sinl()
was no computed correctly when iy != 0.
* lib/msun/src/s_cosl.c:
. Include fpmath.h to get access to IEEEl2bits.
. Replace M_PI_4 with pio4, a 64-bit or 113-bit approximation for pi / 4.
PR: 216862
MFC after: 1 week
This corresponds to the latest status (hasn't changed in 9+
years) from openbsd of ld80/ld128 powl, and source cpowf, cpow,
cpowl (the complex power functions for float complex, double
complex, and long double complex) which are required for C99
compliance and were missing from FreeBSD. Also required for
some numerical codes using complex numbered Hamiltonians.
Thanks to jhb for tracking down the issue with making
weak_reference compile on powerpc.
When asked to review, bde said "I don't like it" - but
provided no actionable feedback or superior implementations.
Discussed with: jhb
Submitted by: jmd
Differential Revision: https://reviews.freebsd.org/D15919
Mainly focus on files that use BSD 2-Clause license, however the tool I
was using mis-identified many licenses so this was mostly a manual - error
prone - task.
The Software Package Data Exchange (SPDX) group provides a specification
to make it easier for automated tools to detect and summarize well known
opensource licenses. We are gradually adopting the specification, noting
that the tags are considered only advisory and do not, in any way,
superceed or replace the license texts.
It turns out our GCC has quite an interesting bug:
typeof(1.0fi) != float _Complex
typeof((float _Complex)1.0fi) != float _Complex
typeof((float _Complex)1.0i) == float _Complex
In other words: if casting to an equal size, GCC seems to take a
shortcut. By casting down from a double to a float, GCC doesn't take
this shortcut, yielding the proper type.
To prevent foot-shooting, add a _Static_assert() to guarantee that
_Complex_I is always a float _Complex. I'm not going to MFC this part of
the diff.
MFC after: 2 weeks
arguments to the needed type and so the result type depended on the argument
type. Fixing them isn't really worth the effort because GCC emits the same
assembler code with or without them.
Not minded by: ru
Approved by: das (mentor)
# This appears to not break X11, but I'm having problems compiling the
# glide part of the server with or without this patch, so I can't tell
# for sure.
to fix the "-nostdinc WARNS=X" breakage caused by broken prototypes
for cabs() and cabsl() in <math.h>.
Reimplemented cabs() and cabsl() using new complex numbers types and
moved prototypes from <math.h> to <complex.h>.