I don't know if it was intentional or not, but it would have printed out:
/compat/linux/foo/bar.so: interpreter not found
If it was, then I've broken it. De-constifying the 'interp' variable
or carrying the constness through to elf_load_file() are alternatives.
Alpha believes that %q is for long long, whereas our quad_t and int64_t
is only just a plain long. long long on the alpha is the same size (64
bit) as a long. It was requested, but I have not implemented yet, support
for C9X style %lld - it should be pretty easy though.
large (1G) memory machine configurations. I was able to run 'dbench 32'
on a 32MB system without bring the machine to a grinding halt.
* buffer cache hash table now dynamically allocated. This will
have no effect on memory consumption for smaller systems and
will help scale the buffer cache for larger systems.
* minor enhancement to pmap_clearbit(). I noticed that
all the calls to it used constant arguments. Making
it an inline allows the constants to propogate to
deeper inlines and should produce better code.
* removal of inherent vfs_ioopt support through the emplacement
of appropriate #ifdef's, with John's permission. If we do not
find a use for it by the end of the year we will remove it entirely.
* removal of getnewbufloops* counters & sysctl's - no longer
necessary for debugging, getnewbuf() is now optimal.
* buffer hash table functions removed from sys/buf.h and localized
to vfs_bio.c
* VFS_BIO_NEED_DIRTYFLUSH flag and support code added
( bwillwrite() ), allowing processes to block when too many dirty
buffers are present in the system.
* removal of a softdep test in bdwrite() that is no longer necessary
now that bdwrite() no longer attempts to flush dirty buffers.
* slight optimization added to bqrelse() - there is no reason
to test for available buffer space on B_DELWRI buffers.
* addition of reverse-scanning code to vfs_bio_awrite().
vfs_bio_awrite() will attempt to locate clusterable areas
in both the forward and reverse direction relative to the
offset of the buffer passed to it. This will probably not
make much of a difference now, but I believe we will start
to rely on it heavily in the future if we decide to shift
some of the burden of the clustering closer to the actual
I/O initiation.
* Removal of the newbufcnt and lastnewbuf counters that Kirk
added. They do not fix any race conditions that haven't already
been fixed by the gbincore() test done after the only call
to getnewbuf(). getnewbuf() is a static, so there is no chance
of it being misused by other modules. ( Unless Kirk can think
of a specific thing that this code fixes. I went through it
very carefully and didn't see anything ).
* removal of VOP_ISLOCKED() check in flushbufqueues(). I do not
think this check is necessary, the buffer should flush properly
whether the vnode is locked or not. ( yes? ).
* removal of extra arguments passed to getnewbuf() that are not
necessary.
* missed cluster_wbuild() that had to be a cluster_wbuild_wb() in
vfs_cluster.c
* vn_write() now calls bwillwrite() *PRIOR* to locking the vnode,
which should greatly aid flushing operations in heavy load
situations - both the pageout and update daemons will be able
to operate more efficiently.
* removal of b_usecount. We may add it back in later but for now
it is useless. Prior implementations of the buffer cache never
had enough buffers for it to be useful, and current implementations
which make more buffers available might not benefit relative to
the amount of sophistication required to implement a b_usecount.
Straight LRU should work just as well, especially when most things
are VMIO backed. I expect that (even though John will not like
this assumption) directories will become VMIO backed some point soon.
Submitted by: Matthew Dillon <dillon@backplane.com>
Reviewed by: Kirk McKusick <mckusick@mckusick.com>
than a review, this was a nice puzzle.
This is supposed to be binary and source compatible with older
applications that access the old FreeBSD-style three arguments to a
signal handler.
Except those applications that access hidden signal handler arguments
bejond the documented third one. If you have applications that do,
please let me know so that we take the opportunity to provide the
functionality they need in a documented manner.
Also except application that use 'struct sigframe' directly. You need
to recompile gdb and doscmd. `make world` is recommended.
Example program that demonstrates how SA_SIGINFO and old-style FreeBSD
handlers (with their three args) may be used in the same process is at
http://www3.cons.org/tmp/fbsd-siginfo.c
Programs that use the old FreeBSD-style three arguments are easy to
change to SA_SIGINFO (although they don't need to, since the old style
will still work):
Old args to signal handler:
void handler_sn(int sig, int code, struct sigcontext *scp)
New args:
void handler_si(int sig, siginfo_t *si, void *third)
where:
old:code == new:second->si_code
old:scp == &(new:si->si_scp) /* Passed by value! */
The latter is also pointed to by new:third, but accessing via
si->si_scp is preferred because it is type-save.
FreeBSD implementation notes:
- This is just the framework to make the interface POSIX compatible.
For now, no additional functionality is provided. This is supposed
to happen now, starting with floating point values.
- We don't use 'sigcontext_t.si_value' for now (POSIX meant it for
realtime-related values).
- Documentation will be updated when new functionality is added and
the exact arguments passed are determined. The comments in
sys/signal.h are meant to be useful.
Reviewed by: BDE
dynamicly linked binaries to run in a chroot'd environment with "emul_path"
as the new root. The new behavior of loading interpreters is identical to the
principle of overlaying.
PR: 10145
into uipc_mbuf.c. This reduces three sets of identical tunable code to
one set, and puts the initialisation with the mbuf code proper.
Make NMBUFs tunable as well.
Move the nmbclusters sysctl here as well.
Move the initialisation of maxsockets from param.c to uipc_socket2.c,
next to its corresponding sysctl.
Use the new tunable macros for the kern.vm.kmem.size tunable (this should have
been in a separate commit, whoops).
returns 0 after ptrace() attach and/or detach doesn't quite quite
deliver a signal. Perhaps the process shouldn't be woken in this
case, but avoiding the problem is easy.
PR: 12247
Fixed a couple of places where mechanical fixing of compiler warnings
caused misspelling of NOLOCKF as NULL.
allow changes to the filesystem's write_behind behavior. By the
default the filesystem aggressively issues write_behind's. Three values
may be specified for vfs.write_behind. 0 disables write_behind, 1 results
in historical operation (agressive write_behind), and 2 is an experimental
backed-off write_behind. The values of 0 and 1 are recommended. The value
of 0 is recommended in conjuction with an increase in the number of
NBUF's and the number of dirty buffers allowed (vfs.{lo,hi}dirtybuffers).
Note that a value of 0 will radically increase the dirty buffer load on
the system. Future work on write_behind behavior will use values 2 and
greater for testing purposes.
Submitted by: Matthew Dillon <dillon@apollo.backplane.com>
Reviewed by: Kirk McKusick <mckusick@mckusick.com>
QUEUE_AGE, QUEUE_LRU, and QUEUE_EMPTY we instead have QUEUE_CLEAN,
QUEUE_DIRTY, QUEUE_EMPTY, and QUEUE_EMPTYKVA. With this patch clean
and dirty buffers have been separated. Empty buffers with KVM
assignments have been separated from truely empty buffers. getnewbuf()
has been rewritten and now operates in a 100% optimal fashion. That is,
it is able to find precisely the right kind of buffer it needs to
allocate a new buffer, defragment KVM, or to free-up an existing buffer
when the buffer cache is full (which is a steady-state situation for
the buffer cache).
Buffer flushing has been reorganized. Previously buffers were flushed
in the context of whatever process hit the conditions forcing buffer
flushing to occur. This resulted in processes blocking on conditions
unrelated to what they were doing. This also resulted in inappropriate
VFS stacking chains due to multiple processes getting stuck trying to
flush dirty buffers or due to a single process getting into a situation
where it might attempt to flush buffers recursively - a situation that
was only partially fixed in prior commits. We have added a new daemon
called the buf_daemon which is responsible for flushing dirty buffers
when the number of dirty buffers exceeds the vfs.hidirtybuffers limit.
This daemon attempts to dynamically adjust the rate at which dirty buffers
are flushed such that getnewbuf() calls (almost) never block.
The number of nbufs and amount of buffer space is now scaled past the
8MB limit that was previously imposed for systems with over 64MB of
memory, and the vfs.{lo,hi}dirtybuffers limits have been relaxed
somewhat. The number of physical buffers has been increased with the
intention that we will manage physical I/O differently in the future.
reassignbuf previously attempted to keep the dirtyblkhd list sorted which
could result in non-deterministic operation under certain conditions,
such as when a large number of dirty buffers are being managed. This
algorithm has been changed. reassignbuf now keeps buffers locally sorted
if it can do so cheaply, and otherwise gives up and adds buffers to
the head of the dirtyblkhd list. The new algorithm is deterministic but
not perfect. The new algorithm greatly reduces problems that previously
occured when write_behind was turned off in the system.
The P_FLSINPROG proc->p_flag bit has been replaced by the more descriptive
P_BUFEXHAUST bit. This bit allows processes working with filesystem
buffers to use available emergency reserves. Normal processes do not set
this bit and are not allowed to dig into emergency reserves. The purpose
of this bit is to avoid low-memory deadlocks.
A small race condition was fixed in getpbuf() in vm/vm_pager.c.
Submitted by: Matthew Dillon <dillon@apollo.backplane.com>
Reviewed by: Kirk McKusick <mckusick@mckusick.com>
SYSINIT_KT() etc (which is a static, compile-time procedure), use a
NetBSD-style kthread_create() interface. kproc_start is still available
as a SYSINIT() hook. This allowed simplification of chunks of the
sysinit code in the process. This kthread_create() is our old kproc_start
internals, with the SYSINIT_KT fork hooks grafted in and tweaked to work
the same as the NetBSD one.
One thing I'd like to do shortly is get rid of nfsiod as a user initiated
process. It makes sense for the nfs client code to create them on the
fly as needed up to a user settable limit. This means that nfsiod
doesn't need to be in /sbin and is always "available". This is a fair bit
easier to do outside of the SYSINIT_KT() framework.
the caller can easily find the child proc struct. fork(), rfork() etc
syscalls set p->p_retval[] themselves. Simplify the SYSINIT_KT() code
and other kernel thread creators to not need to use pfind() to find the
child based on the pid. While here, partly tidy up some of the fork1()
code for RF_SIGSHARE etc.
(really this time) fix pageout to swap and a couple of clustering cases.
This simplifies BUF_KERNPROC() so that it unconditionally reassigns the
lock owner rather than testing B_ASYNC and having the caller decide when
to do the reassign. At present this is required because some places use
B_CALL/b_iodone to free the buffers without B_ASYNC being set. Also,
vfs_cluster.c explicitly calls BUF_KERNPROC() when attaching the buffers
rather than the parent walking the cluster_head tailq.
Reviewed by: Kirk McKusick <mckusick@mckusick.com>
if LK_RECURSIVE is not set, as we will simply return that the
lock is busy and not actually deadlock. This allows processes
to use polling locks against buffers that they may already
hold exclusively locked.
lockmgr locks. This commit should be functionally equivalent to the old
semantics. That is, all buffer locking is done with LK_EXCLUSIVE
requests. Changes to take advantage of LK_SHARED and LK_RECURSIVE will
be done in future commits.
- Split syscons source code into manageable chunks and reorganize
some of complicated functions.
- Many static variables are moved to the softc structure.
- Added a new key function, PREV. When this key is pressed, the vty
immediately before the current vty will become foreground. Analogue
to PREV, which is usually assigned to the PrntScrn key.
PR: kern/10113
Submitted by: Christian Weisgerber <naddy@mips.rhein-neckar.de>
- Modified the kernel console input function sccngetc() so that it
handles function keys properly.
- Reorganized the screen update routine.
- VT switching code is reorganized. It now should be slightly more
robust than before.
- Added the DEVICE_RESUME function so that syscons no longer hooks the
APM resume event directly.
- New kernel configuration options: SC_NO_CUTPASTE, SC_NO_FONT_LOADING,
SC_NO_HISTORY and SC_NO_SYSMOUSE.
Various parts of syscons can be omitted so that the kernel size is
reduced.
SC_PIXEL_MODE
Made the VESA 800x600 mode an option, rather than a standard part of
syscons.
SC_DISABLE_DDBKEY
Disables the `debug' key combination.
SC_ALT_MOUSE_IMAGE
Inverse the character cell at the mouse cursor position in the text
console, rather than drawing an arrow on the screen.
Submitted by: Nick Hibma (n_hibma@FreeBSD.ORG)
SC_DFLT_FONT
makeoptions "SC_DFLT_FONT=_font_name_"
Include the named font as the default font of syscons. 16-line,
14-line and 8-line font data will be compiled in. This option replaces
the existing STD8X16FONT option, which loads 16-line font data only.
- The VGA driver is split into /sys/dev/fb/vga.c and /sys/isa/vga_isa.c.
- The video driver provides a set of ioctl commands to manipulate the
frame buffer.
- New kernel configuration option: VGA_WIDTH90
Enables 90 column modes: 90x25, 90x30, 90x43, 90x50, 90x60. These
modes are mot always supported by the video card.
PR: i386/7510
Submitted by: kbyanc@freedomnet.com and alexv@sui.gda.itesm.mx.
- The header file machine/console.h is reorganized; its contents is now
split into sys/fbio.h, sys/kbio.h (a new file) and sys/consio.h
(another new file). machine/console.h is still maintained for
compatibility reasons.
- Kernel console selection/installation routines are fixed and
slightly rebumped so that it should now be possible to switch between
the interanl kernel console (sc or vt) and a remote kernel console
(sio) again, as it was in 2.x, 3.0 and 3.1.
- Screen savers and splash screen decoders
Because of the header file reorganization described above, screen
savers and splash screen decoders are slightly modified. After this
update, /sys/modules/syscons/saver.h is no longer necessary and is
removed.
at which we may sleep. So, after completing our buffer allocation
we must ensure that another process has not come along and allocated
a different buffer with the same identity. We do this by keeping a
global counter of the number of buffers that getnewbuf has allocated.
We save this count when we enter getnewbuf and check it when we are
about to return. If it has changed, then other buffers were allocated
while we were in getnewbuf, so we must return NULL to let our parent
know that it must recheck to see if it still needs the new buffer.
Hopefully this fix will eliminate the creation of duplicate buffers
with the same identity and the obscure corruptions that they cause.
done is less-than cute, but this whole file is suffering from some amount
of bitrot. Execution of zipped files should probably be implemented in a
manner similar to that of #!/interpreted files.
PR: kern/10780
automatically hacks on the active copy of the IDT if f00f_hack()
has changed it. This also allows simplifications in setidt().
This fixes breakage of FP exception handling by rev.1.55 of
sys/kernel.h. FP exceptions were sent to npx.c's probe handlers
because npx.c "restored" the old handlers to the wrong copy of the
IDT. The SYSINIT for f00f_hack() was purposely run quite late to
avoid problems like this, but it is bogusly associated with the
SYSINIT for proc0 so it was moved with the latter.
Problem reported and fix tested by: Martin Cracauer <cracauer@cons.org>
This is the change to struct sockets that gets rid of so_uid and replaces
it with a much more useful struct pcred *so_cred. This is here to be able
to do socket-level credential checks (i.e. IPFW uid/gid support, to be added
to HEAD soon). Along with this comes an update to pidentd which greatly
simplifies the code necessary to get a uid from a socket. Soon to come:
a sysctl() interface to finding individual sockets' credentials.