u_int64_t flag field, bounding the number of capabilities at 64,
but substantially cleaning up capability logic (there are currently
43 defined capabilities).
o Heads up to anyone actually using capabilities: the constant
assignments for various capabilities have been redone, so any
persistent binary capability stores (i.e., '$posix1e.cap' EA
backing files) must be recreated. If you have one of these,
you'll know about it, so if you have no idea what this means,
don't worry.
o Update libposix1e to reflect this new definition, fixing the
exposed functions that directly manipulate the flags fields.
Obtained from: TrustedBSD Project
in the face of non-stripe-aligned swap areas. The bug could cause a
panic during boot.
Refuse to configure a swap area that is too large (67 GB or so)
Properly document the power-of-2 requirement for SWB_NPAGES.
The patch is slightly different then the one Tor enclosed in the P.R.,
but accomplishes the same thing.
PR: kern/20273
Submitted by: Tor.Egge@fast.no
userland from here; just forward declare struct stat. fhstat.2
(== fhopen.2 == fhstatfs.2) has always specified including
<sys/stat.h> before using any of the fh functions although this is
only necessary for dereferencing the "struct stat *" arg of fhstat(),
so applications should not notice this change.
Fixed unsorting of user prototypes in rev.1.78.
1. Don't include <sys/conf.h> in userland. It is not used, and including it
without including its prerequisite <sys/time.h> should have broken the
world.
2. Don't include <sys/mount.h>. It is not used, except in -current it
bogusly includes <sys/stat.h> which bogusly includes <sys/time.h> and
thus accidentally provides the prerequisite in (1).
3. Cleaned up nearby include messes.
Not approved by despite 5 weeks notice: MAINTAINER
with FreeBSD (not including the MINSIGSTKSZ issue, which belongs to
Marcel). Due to time constraints, I'm going to space them out over a
few days.
This fixes two problems with linux_sigaltstack()
o ss == 0 is perfectly valid use, so do not fail in this case.
o Fix flag handling:
- Our SS_DISABLE is 4, linux's is 2, so we need conversion routines.
These conversion routines will be needed by linux_rt_sendsig()
and linux_rt_sigreturn (forthcoming), so they are not static.
- Linux's flag 0 historically meant SS_ONSTACK according to a comment
in their linux/kernel/signal.c file.
Among other things, this fixes a warning from Sun's JDK 1.3:
"Java HotSpot(TM) Client VM warning: cannot uninstall alt signal stack"
Reviewed by: marcel
Tested by: sto@stat.duke.edu, many others on freebsd-java@
and initialized during boot. This avoids bloating sizeof(struct lock).
As a side effect, it is no longer necessary to enforce the assumtion that
lockinit()/lockdestroy() calls are paired, so the LK_VALID flag has been
removed.
Idea taken from: BSD/OS.
and instead reapply the revision 1.49 of mbuf.h, i.e.
Fixed regression of the type of the `header' member of struct pkthdr from
`void *' to caddr_t in rev.1.51. This mainly caused an annoying warning
for compiling ip_input.c.
Requested by: bde
exceptions from both kernel and user mode.
* Fix context switching so that we can switch back to a proc which we
switched away from (we were saving the state in the wrong place).
* Implement lazy switching of the high-fp state. This needs to be looked
at again for SMP to cope with the case of a process migrating from one
processor to another while it has the high-fp state.
* Make setregs() work properly. I still think this should be called
cpu_exec() or something.
* Various other minor fixes.
With this lot, we can execve() /sbin/init and we get all the way up to its
first syscall. At that point, we stop because syscall handling is not done
yet.
during the qinfifo optimization. When swapping HSCBs, we were only copying
the first 32 bytes, the amount used in the common case of a cdb <= 12 bytes.
Larger cdbs are stored in the second 32 bytes of the cdb.
Noticed by: Marc Frajola <marc@terasolutions.com>
safe - we can't afford to take a TLB trap when we are writing a
trapframe. Possibly revisit this later.
* Various fixes to pmap_enter() so that it actually works properly.
This shouldn't affect the alpha or ia64, since they don't have a
variable named astpending. The alpha still has 2 declarations of
this nonexistent variable.
the #includes to the respective source files.
Also un-nest includes in <dev/hfa/fore_include.h>
I have run src/tools/tools/kerninclude to remove 1239 clearly
unneeded #includes reducing the total from 3524 includes to 2285.
Define the NETISR just like all the other NETISRs.
unifdef -Usun -D__FreeBSD__ we will probably never support sun4c
and if we do we can't use the solaris code anyway and I doubt
anybody will be running Fore ATM cards in then in the first place.
past we stored this data in the CCB and attained the CCB via a pointer
in the SCB. In ahc_timeout(), however, the timedout SCB may have already
been completed (inherent race), meaning that the CCB could have been recycled,
and the ahc pointer reset.
Clean up the logic in ahc_search_qinfifo that deals with the busy device
table. For some reason it assumed that the only valid time to search
to see if additional lun entries should be checked was if lun 0 matched.
Now we properly itterate through the necessary luns. The busy device
table is used to detect invalid reselections, so a device would have had
to perform an unexpected reselection for this to cause problems. Further,
all luns are collapsed to a single entry unless we have external ram
with large SCBs (3940AU models) so the chance of this happening was
rather remote.
Clean up the logic for dealing with the untagged queues. We now set a
flag in the SCB that indicates that it is on the untagged queue instead
of inferring this from the type and setup of the CCB pased into us by
CAM.
In ahc_timeout(), don't print the path of the SCB until the controller
is paused and we are sure that it has not completed yet. This, in
conjunction with referencing the ahc pointer in the SCB rather than
the CCB in the SCB avoids panics in the case of a timedout scb completing
just before the timeout handler runs. This turns out to be guaranteed
if interrupt delivery is failing, as we run our interrupt handler to
flush any "just missed events" when a timeout occurs. Mention the
likelyhood of broken interrupts if a timedout SCB is completed by
our call to ahc_intr().