in 182691, as the sparc64 version is going to be rototilled and sun4v
currently can't be verified to still work with the new sparc64 one
due to its overall state.
Split the driver into the core functionality part (sys/dev/tsec/if_tsec.c) and
the bus attachment (sys/dev/tsec/if_tsec_ocp.c).
This lets better integrate and maintain the driver in other environments with
different attachment abstractions (there is at least one other FreeBSD port --
MPC83xx -- which uses this TSEC driver, but with different local bus model
i.e. some OF derivative). While there, clean up and fix minor cosmetics.
Obtained from: Semihalf
This is a sync to mesa/drm pre-gem, with a few fixes on top of that.
It also contains one local patch supplied by kib@ that I can't apply to
git.master shared code.
Approved by: flz
Obtained from: mesa/drm git.master
MFC after: 2 weeks
(1) Abstract interpreter vnode labeling in execve(2) and mac_execve(2)
so that the general exec code isn't aware of the details of
allocating, copying, and freeing labels, rather, simply passes in
a void pointer to start and stop functions that will be used by
the framework. This change will be MFC'd.
(2) Introduce a new flags field to the MAC_POLICY_SET(9) interface
allowing policies to declare which types of objects require label
allocation, initialization, and destruction, and define a set of
flags covering various supported object types (MPC_OBJECT_PROC,
MPC_OBJECT_VNODE, MPC_OBJECT_INPCB, ...). This change reduces the
overhead of compiling the MAC Framework into the kernel if policies
aren't loaded, or if policies require labels on only a small number
or even no object types. Each time a policy is loaded or unloaded,
we recalculate a mask of labeled object types across all policies
present in the system. Eliminate MAC_ALWAYS_LABEL_MBUF option as it
is no longer required.
MFC after: 1 week ((1) only)
Reviewed by: csjp
Obtained from: TrustedBSD Project
Sponsored by: Apple, Inc.
on the presence of fhc(4) instead; we by far don't support all of
the functionality provide by the clock board but in general it's
an integral part of FireHose-based systems which shouldn't be
possible to omit.
The last half year I've been working on a replacement TTY layer for the
FreeBSD kernel. The new TTY layer was designed to improve the following:
- Improved driver model:
The old TTY layer has a driver model that is not abstract enough to
make it friendly to use. A good example is the output path, where the
device drivers directly access the output buffers. This means that an
in-kernel PPP implementation must always convert network buffers into
TTY buffers.
If a PPP implementation would be built on top of the new TTY layer
(still needs a hooks layer, though), it would allow the PPP
implementation to directly hand the data to the TTY driver.
- Improved hotplugging:
With the old TTY layer, it isn't entirely safe to destroy TTY's from
the system. This implementation has a two-step destructing design,
where the driver first abandons the TTY. After all threads have left
the TTY, the TTY layer calls a routine in the driver, which can be
used to free resources (unit numbers, etc).
The pts(4) driver also implements this feature, which means
posix_openpt() will now return PTY's that are created on the fly.
- Improved performance:
One of the major improvements is the per-TTY mutex, which is expected
to improve scalability when compared to the old Giant locking.
Another change is the unbuffered copying to userspace, which is both
used on TTY device nodes and PTY masters.
Upgrading should be quite straightforward. Unlike previous versions,
existing kernel configuration files do not need to be changed, except
when they reference device drivers that are listed in UPDATING.
Obtained from: //depot/projects/mpsafetty/...
Approved by: philip (ex-mentor)
Discussed: on the lists, at BSDCan, at the DevSummit
Sponsored by: Snow B.V., the Netherlands
dcons(4) fixed by: kan
In order to CATER this, DDB buffered output can be choosen at compile
time through the option DDB_BUFR_SIZE=nbytes where nbytes choose the size
of the buffer (suggested size is 128 bytes), which should be manually
specified in any interested config file.
Sponsored by: Nokia
virtualization work done by Marko Zec (zec@).
This is the first in a series of commits over the course
of the next few weeks.
Mark all uses of global variables to be virtualized
with a V_ prefix.
Use macros to map them back to their global names for
now, so this is a NOP change only.
We hope to have caught at least 85-90% of what is needed
so we do not invalidate a lot of outstanding patches again.
Obtained from: //depot/projects/vimage-commit2/...
Reviewed by: brooks, des, ed, mav, julian,
jamie, kris, rwatson, zec, ...
(various people I forgot, different versions)
md5 (with a bit of help)
Sponsored by: NLnet Foundation, The FreeBSD Foundation
X-MFC after: never
V_Commit_Message_Reviewed_By: more people than the patch
found in Soekris hardware, for instance). The hardware supports acceleration
of AES-128-CBC accessible through crypto(4) and supplies entropy to random(4).
TODO:
o Implement rndtest(4) support
o Performance enhancements
Submitted by: Patrick Lamaizière <patfbsd -at- davenulle.org>
Reviewed by: jhb, sam
MFC after: 1 week
features of CPUs like reading/writing machine-specific registers,
retrieving cpuid data, and updating microcode.
- Add cpucontrol(8) utility, that provides userland access to
the features of cpuctl(4).
- Add subsequent manpages.
The cpuctl(4) device operates as follows. The pseudo-device node cpuctlX
is created for each cpu present in the systems. The pseudo-device minor
number corresponds to the cpu number in the system. The cpuctl(4) pseudo-
device allows a number of ioctl to be preformed, namely RDMSR/WRMSR/CPUID
and UPDATE. The first pair alows the caller to read/write machine-specific
registers from the correspondent CPU. cpuid data could be retrieved using
the CPUID call, and microcode updates are applied via UPDATE.
The permissions are inforced based on the pseudo-device file permissions.
RDMSR/CPUID will be allowed when the caller has read access to the device
node, while WRMSR/UPDATE will be granted only when the node is opened
for writing. There're also a number of priv(9) checks.
The cpucontrol(8) utility is intened to provide userland access to
the cpuctl(4) device features. The utility also allows one to apply
cpu microcode updates.
Currently only Intel and AMD cpus are supported and were tested.
Approved by: kib
Reviewed by: rpaulo, cokane, Peter Jeremy
MFC after: 1 month
As clearly mentioned on the mailing lists, there is a list of drivers
that have not been ported to the MPSAFE TTY layer yet. Remove them from
the kernel configuration files. This means people can now still use
these drivers if they explicitly put them in their kernel configuration
file, which is good.
People should keep in mind that after August 10, these drivers will not
work anymore. Even though owners of the hardware are capable of getting
these drivers working again, I will see if I can at least get them to a
compilable state (if time permits).
The ttyinfo() routine generates the fancy output when pressing ^T. Right
now it is stored in tty.c. In the MPSAFE TTY code it is already stored
in tty_info.c. To make integration of the MPSAFE TTY code a little
easier, take the same approach.
This makes the TTY code a little bit more readable, because having the
proc_*/thread_* routines in tty.c is very distractful.
Approved by: philip (mentor)
MPSAFE patches on current@ and stable@. This driver also has a fundamental
issue in that it sleeps when sending commands to the card including in the
if_init/if_start routines (which can be called from interrupt context). As
such, the driver shouldn't be working reliably even on 4.x.
and stable@. It also is a driver for an older non-802.11 wireless PC card
that is quite slow in comparison to say, wi(4). I know Warner wants this
driver axed as well.
current@ and stable@ for the locking patches. The driver can always be
revived if someone tests it.
This driver also sleeps in its if_init routine, so it likely doesn't really
work at all anyway in modern releases.
provides the correct semantics for flock(2) style locks which are used by the
lockf(1) command line tool and the pidfile(3) library. It also implements
recovery from server restarts and ensures that dirty cache blocks are written
to the server before obtaining locks (allowing multiple clients to use file
locking to safely share data).
Sponsored by: Isilon Systems
PR: 94256
MFC after: 2 weeks