system calls to provide feed-forward clock management capabilities to
userspace processes. ffclock_getcounter() returns the current value of the
kernel's feed-forward clock counter. ffclock_getestimate() returns the current
feed-forward clock parameter estimates and ffclock_setestimate() updates the
feed-forward clock parameter estimates.
- Document the syscalls in the ffclock.2 man page.
- Regenerate the script-derived syscall related files.
Committed on behalf of Julien Ridoux and Darryl Veitch from the University of
Melbourne, Australia, as part of the FreeBSD Foundation funded "Feed-Forward
Clock Synchronization Algorithms" project.
For more information, see http://www.synclab.org/radclock/
Submitted by: Julien Ridoux (jridoux at unimelb edu au)
for upcoming 64-bit PowerPC and MIPS support. This renames the COMPAT_IA32
option to COMPAT_FREEBSD32, removes some IA32-specific code from MI parts
of the kernel and enhances the freebsd32 compatibility code to support
big-endian platforms.
Reviewed by: kib, jhb
The previous commit also included changes to all the system call lists,
but it is a tradition to update these lists in a second commit, so rerun
make sysent to update the $FreeBSD$ tags inside these files to refer to
the latest version of syscalls.master.
Requested by: rwatson
The last half year I've been working on a replacement TTY layer for the
FreeBSD kernel. The new TTY layer was designed to improve the following:
- Improved driver model:
The old TTY layer has a driver model that is not abstract enough to
make it friendly to use. A good example is the output path, where the
device drivers directly access the output buffers. This means that an
in-kernel PPP implementation must always convert network buffers into
TTY buffers.
If a PPP implementation would be built on top of the new TTY layer
(still needs a hooks layer, though), it would allow the PPP
implementation to directly hand the data to the TTY driver.
- Improved hotplugging:
With the old TTY layer, it isn't entirely safe to destroy TTY's from
the system. This implementation has a two-step destructing design,
where the driver first abandons the TTY. After all threads have left
the TTY, the TTY layer calls a routine in the driver, which can be
used to free resources (unit numbers, etc).
The pts(4) driver also implements this feature, which means
posix_openpt() will now return PTY's that are created on the fly.
- Improved performance:
One of the major improvements is the per-TTY mutex, which is expected
to improve scalability when compared to the old Giant locking.
Another change is the unbuffered copying to userspace, which is both
used on TTY device nodes and PTY masters.
Upgrading should be quite straightforward. Unlike previous versions,
existing kernel configuration files do not need to be changed, except
when they reference device drivers that are listed in UPDATING.
Obtained from: //depot/projects/mpsafetty/...
Approved by: philip (ex-mentor)
Discussed: on the lists, at BSDCan, at the DevSummit
Sponsored by: Snow B.V., the Netherlands
dcons(4) fixed by: kan
While the KSE project was quite successful in bringing threading to
FreeBSD, the M:N approach taken by the kse library was never developed
to its full potential. Backwards compatibility will be provided via
libmap.conf for dynamically linked binaries and static binaries will
be broken.