boundaries. For good measure, align all other objects to cache
lines boundaries.
Use the new arch_loadseg I/F to keep track of kernel text and
data so that we can wire as much of it as is possible. It is
the responsibility of the kernel to link critical (read IVT
related) code and data at the front of the respective segment
so that it's covered by TRs before the kernel has a chance to
add more translations.
Use a better way of determining whether we're loading a legacy
kernel or not. We can't check for the presence of the PBVM page
table, because we may have unloaded that kernel and loaded an
older (legacy) kernel after that. Simply use the latest load
address for it.
sizes are not supported.
o Map the PBVM page table.
o Map the PBVM using the largest possible power of 2 that is less than
the amount of PBVM used and round down to a valid page size. Note
that the current kernel is between 8MB and 16MB in size, which would
mean that 8MB would be the typical size of the mapping, if only 8MB
wasn't an invalid page size. In practice, we end up mapping the first
4MB of PBVM in most cases.
between kernel virtual address and physical address anymore. This so
that we can link the kernel at some virtual address without having
to worry whether the corresponding physical memory exists and is
available. The PBVM uses 64KB pages that are mapped to physical
addresses using a page table. The page table is at least 1 EFI page
in size, but can grow up to 1MB. This effectively gives us a memory
size between 32MB and 8GB -- i.e. enough to load a DVD image if one
wants to.
The loader assigns physical memory based on the EFI memory map and
makes sure that all physical memory is naturally aligned and a power
of 2. At this time there's no consideration for allocating physical
memory that is close to the BSP.
The kernel is informed about the physical address of the page table
and its size and can locate all PBVM pages through it.
The loader does not wire the PBVM page table yet. Instead it wires
all of the PBVM with a single translation. This is fine for now,
but a follow-up commit will fix it. We cannot handle more than 32MB
right now.
Note that the loader will map as much of the loaded kernel and
modules as possible, but it's up to the kernel to handle page faults
for references that aren't mapped. To make that easier, the page
table is mapped at a fixed virtual address.
x86 CPU support, better support for powerpc64, some new directives, and
many other things. Bump __FreeBSD_version, and add a note to UPDATING.
Thanks to the many people that have helped to test this.
Obtained from: projects/binutils-2.17
to move the .IA_64.unwind and .IA_64.unwind_info input sections into
separate output sections.
Otherwise ld will complain about it (".data has both ordered
[`.IA_64.unwind'] and unordered [`.IA_64.unwind_info'] sections").
This makes ia64 buildworld run to full completion.
as this only allows us to access file systems that EFI knows about.
With a loader that can only use EFI-supported file systems, we're
forced to put /boot on the EFI system partition. This is suboptimal
in the following ways:
1. With /boot a symlink to /efi/boot, mergemaster complains about
the mismatch and there's no quick solution.
2. The EFI loader can only boot a single version of FreeBSD. There's
no way to install multiple versions of FreeBSD and select one
at the loader prompt.
3. ZFS maintains /boot/zfs/zpool.cache and with /boot a symlink we
end up with the file on a MSDOS file system. ZFS does not have
proper handling of file systems that are under Giant.
Implement a disk device based on the block I/O protocol instead and
pull in file system code from libstand. The disk devices are really
the partitions that EFI knows about.
This change is backward compatible.
MFC after: 1 week
- It is opt-out for now so as to give it maximum testing, but it may be
turned opt-in for stable branches depending on the consensus. You
can turn it off with WITHOUT_SSP.
- WITHOUT_SSP was previously used to disable the build of GNU libssp.
It is harmless to steal the knob as SSP symbols have been provided
by libc for a long time, GNU libssp should not have been much used.
- SSP is disabled in a few corners such as system bootstrap programs
(sys/boot), process bootstrap code (rtld, csu) and SSP symbols themselves.
- It should be safe to use -fstack-protector-all to build world, however
libc will be automatically downgraded to -fstack-protector because it
breaks rtld otherwise.
- This option is unavailable on ia64.
Enable GCC stack protection (aka Propolice) for kernel:
- It is opt-out for now so as to give it maximum testing.
- Do not compile your kernel with -fstack-protector-all, it won't work.
Submitted by: Jeremie Le Hen <jeremie@le-hen.org>
speculative loads. This at least makes control speculative loads
work. In the future we should analyze which faults/exceptions
we want to handle rather than defer to avoid having to call the
recovery code when it's not strictly necessary.
1. Make libefi portable by removing ia64 specific code and build
it on i386 and amd64 by default to prevent regressions. These
changes include fixes and improvements over previous code to
establish or improve APIs where none existed or when the amount
of kluging was unacceptably high.
2. Increase the amount of sharing between the efi and ski loaders
to improve maintainability of the loaders and simplify making
changes to the loader-kernel handshaking in the future.
The version of the efi and ski loaders are now both changed to 1.2
as user visible improvements and changes have been made.
device (kind) specific unit field to the common field. This change
allows a future version of libefi to work without requiring anything
more than what is defined in struct devdesc and as such makes it
possible to compile said version of libefi for different platforms
without requiring that those platforms have identical derivatives
of struct devdesc.
changing the Makefile, fail the creation of loader.efi when there are
unresolved symbols in loader.sym. This avoids silently creating a
faulty EFI binary.
use <machine/efi.h> for the necessary definitions. This makes the EFI
code in sys/boot/efi totally unused, except for pure EFI loaders. As
such, maintenance and porting (to IA-32) of the EFI code is made as easy
as possible.