Now we have a single /dev/snp device node, which can be opened by
watch(8) multiple times. Even though snp(4) will be dead as of next
week, it's nice having this in SVN, because:
- We may want to MFC it to RELENG_7.
- By the time we fix snp(4) again, it's already there, existing watch(8)
binaries should already work.
Just like bpf(4), I'm adding a symlink from snp0 to snp to remain binary
compatible.
bpf(4) now uses cdevpriv to distinguish multiple file descriptors, where
it used to be implemented using device cloning. Ports like libpcap
properly detect the change in their configure scripts, but it doesn't
hurt to increase __FreeBSD_version.
While there, change the bpf(4) manual page to refer to /dev/bpf instead
of /dev/bpfN.
Requested by: mlaier
This driver supports GW3887 based chipsets and works on
x86/powerpc/sparc64. You need upgtfw kernel module before loading
upgt(4). Please see the manpage.
Obtained from: OpenBSD
features of CPUs like reading/writing machine-specific registers,
retrieving cpuid data, and updating microcode.
- Add cpucontrol(8) utility, that provides userland access to
the features of cpuctl(4).
- Add subsequent manpages.
The cpuctl(4) device operates as follows. The pseudo-device node cpuctlX
is created for each cpu present in the systems. The pseudo-device minor
number corresponds to the cpu number in the system. The cpuctl(4) pseudo-
device allows a number of ioctl to be preformed, namely RDMSR/WRMSR/CPUID
and UPDATE. The first pair alows the caller to read/write machine-specific
registers from the correspondent CPU. cpuid data could be retrieved using
the CPUID call, and microcode updates are applied via UPDATE.
The permissions are inforced based on the pseudo-device file permissions.
RDMSR/CPUID will be allowed when the caller has read access to the device
node, while WRMSR/UPDATE will be granted only when the node is opened
for writing. There're also a number of priv(9) checks.
The cpucontrol(8) utility is intened to provide userland access to
the cpuctl(4) device features. The utility also allows one to apply
cpu microcode updates.
Currently only Intel and AMD cpus are supported and were tested.
Approved by: kib
Reviewed by: rpaulo, cokane, Peter Jeremy
MFC after: 1 month
msleep/mtx_sleep or the various cv_*wait*() routines. Currently, the
"unlock" behavior of PDROP and cv_wait_unlock() with Giant is not
permitted as it is will be confusing since Giant is fully unrecursed and
unlocked during a thread sleep.
This is handy for subsystems which wish to allow unlocked drivers to
continue to use Giant such as CAM, the new TTY layer, and the new USB
stack. CAM currently uses a hack that I told Scott to use because I
really didn't want to permit this behavior, and the TTY and USB patches
both have various patches to permit this.
MFC after: 2 weeks
yank it's description; likewise for the FIRMWARE_WAIT flag to firmware_put.
For the record, the last commit was to cleanup various mistakes and correct
the example of embedding to reflect the npe firmware now being distributed
with the system.
describes the minimum versions of each feature and each chipset type
supported by this driver. Basically, unless you have a very modern
version of firmware on a Prism card, you won't be able to use these
cards for much on modern networks that have any kind of protection
enabled, except for the few WEP-only stranglers that appear at some
conferences...
MPSAFE patches on current@ and stable@. This driver also has a fundamental
issue in that it sleeps when sending commands to the card including in the
if_init/if_start routines (which can be called from interrupt context). As
such, the driver shouldn't be working reliably even on 4.x.
and stable@. It also is a driver for an older non-802.11 wireless PC card
that is quite slow in comparison to say, wi(4). I know Warner wants this
driver axed as well.
current@ and stable@ for the locking patches. The driver can always be
revived if someone tests it.
This driver also sleeps in its if_init routine, so it likely doesn't really
work at all anyway in modern releases.
Adaptec RAID 2045
Adaptec RAID 2405
Adaptec RAID 2445
Adaptec RAID 2805
Without this change these devices are supported by the driver's family
support, but they then appear as "Adaptec RAID Controller" in boot
messages and the dev.aac.0.%desc sysctl.