of 1024- Ultra4 256). Rename 'requests' tag to 'request_pool' for clarity.
Make sure we do correct xpt_freeze_simq/CAM_RELEASE_SIMQ if we run out
of chip resources.
MFC after: 6 days
In mpttimeout, call mpt_intr just on the offchance that we missed
an interrupt. We can check to see whether or not the command that
is timing out got completed.
When we *do* decide to timeout a command, set the command state to
REQ_TIMEOUT and then invoke another timeout (hz/10)- mpttimeout2.
This allows us to catch a couple cases we've seen where the command
we timed out on in fact is ready to be completed by the firmware.
In any case, it's only after mpttimeout2 is called that we actually
take down the private state and free the request itself. CAM has
been notified in mpttimeout anyway. This whole area should be redone,
but that will take 105% of my available game time for this month.
Fix a couple of missing (and not useful, at presnet) CAMLOCK_2_MPTLOCK
and MPTLOCK_2_CAMLOCK locations.
Split mpt_notify into mpt_ctlop, which handles all reply completions
that have 0x800000000 or'd into the ContextID. This function can, in
fact, call mpt_event_notify_reply, which handles the traditional
async event notifications. While we're at it, put in the extremely
important (but currently untested) code that send back an Ack to
an Event Notification (if the Event Notification is marked with
AckRequired). Note that an Ack also generates another ctlop completion,
tra la.
Fix up mpt_done substantially to try and get how we plug into CAM
correctly done. Remove bogus CAM_RELEASE_SIMQ settings.
Do some cleanups in mpt_action that are related to speed negotiation
for Ultra4 cards. This is an area that is still quite fragile and
worrisome as config data being read back often doesn't make sense or
jibe with the documentation.
At any rate, after these changes were done, I was finally able to
get Lars Eggert's dual 320M disk system to stay up under load all
weekend- hopefully we're in good enough for now shape.
MFC after: 1 week
a) we don't believe what the board tells us all the time (if the BIOS
hasn't run, port page 2 and port page 0 tend to be garbage)
b) add the missing code to set parameters for the SPI cards.
MFC after: 0 days
We now also read configuration information for the SCSI cards- this allows
us to try and say what the speed settings now are.
Start, but not yet complete, the process of reorgs && #defines so that we
can backport to RELENG_4 pretty soon.
This is an architecture that present a thing message passing interface
to the OS. You can query as to how many ports and what kind are attached
and enable them and so on.
A less grand view is that this is just another way to package SCSI (SPI or
FC) and FC-IP into a one-driver interface set.
This driver support the following hardware:
LSI FC909: Single channel, 1Gbps, Fibre Channel (FC-SCSI only)
LSI FC929: Dual Channel, 1-2Gbps, Fibre Channel (FC-SCSI only)
LSI 53c1020: Single Channel, Ultra4 (320M) (Untested)
LSI 53c1030: Dual Channel, Ultra4 (320M)
Currently it's in fair shape, but expect a lot of changes over the
next few weeks as it stabilizes.
Credits:
The driver is mostly from some folks from Jeff Roberson's company- I've
been slowly migrating it to broader support that I it came to me as.
The hardware used in developing support came from:
FC909: LSI-Logic, Advansys (now Connetix)
FC929: LSI-Logic
53c1030: Antares Microsystems (they make a very fine board!)
MFC after: 3 weeks