The constant I was using was correct, but I mislabeled it as 256K when
it should have been 512K. This doesn't actually change the code, but
it clarifies things somewhat.
Submitted by: Chuck Cranor <chuck@research.att.com>
mtx_enter(lock, type) becomes:
mtx_lock(lock) for sleep locks (MTX_DEF-initialized locks)
mtx_lock_spin(lock) for spin locks (MTX_SPIN-initialized)
similarily, for releasing a lock, we now have:
mtx_unlock(lock) for MTX_DEF and mtx_unlock_spin(lock) for MTX_SPIN.
We change the caller interface for the two different types of locks
because the semantics are entirely different for each case, and this
makes it explicitly clear and, at the same time, it rids us of the
extra `type' argument.
The enter->lock and exit->unlock change has been made with the idea
that we're "locking data" and not "entering locked code" in mind.
Further, remove all additional "flags" previously passed to the
lock acquire/release routines with the exception of two:
MTX_QUIET and MTX_NOSWITCH
The functionality of these flags is preserved and they can be passed
to the lock/unlock routines by calling the corresponding wrappers:
mtx_{lock, unlock}_flags(lock, flag(s)) and
mtx_{lock, unlock}_spin_flags(lock, flag(s)) for MTX_DEF and MTX_SPIN
locks, respectively.
Re-inline some lock acq/rel code; in the sleep lock case, we only
inline the _obtain_lock()s in order to ensure that the inlined code
fits into a cache line. In the spin lock case, we inline recursion and
actually only perform a function call if we need to spin. This change
has been made with the idea that we generally tend to avoid spin locks
and that also the spin locks that we do have and are heavily used
(i.e. sched_lock) do recurse, and therefore in an effort to reduce
function call overhead for some architectures (such as alpha), we
inline recursion for this case.
Create a new malloc type for the witness code and retire from using
the M_DEV type. The new type is called M_WITNESS and is only declared
if WITNESS is enabled.
Begin cleaning up some machdep/mutex.h code - specifically updated the
"optimized" inlined code in alpha/mutex.h and wrote MTX_LOCK_SPIN
and MTX_UNLOCK_SPIN asm macros for the i386/mutex.h as we presently
need those.
Finally, caught up to the interface changes in all sys code.
Contributors: jake, jhb, jasone (in no particular order)
Have if_ti stop "hiding" the softc pointer in the buffer region. Rather,
use the available void * passed to the free routine and pass the softc
pointer through there.
To note: in MEXTADD(), TI_JUMBO_FRAMELEN should probably be TI_JLEN. I left it
unchanged, because this way I'm sure to not damage anything in this respect...
takes care of all the 10/100 and gigE PCI drivers that I've done.
Next will be the wireless drivers, then the USB ones. I may pick up
some stragglers along the way. I'm sort of playing this by ear: if
anyone spots any places where I've screwed up horribly, please let me
know.
that should be better.
The old code counted references to mbuf clusters by using the offset
of the cluster from the start of memory allocated for mbufs and
clusters as an index into an array of chars, which did the reference
counting. If the external storage was not a cluster then reference
counting had to be done by the code using that external storage.
NetBSD's system of linked lists of mbufs was cosidered, but Alfred
felt it would have locking issues when the kernel was made more
SMP friendly.
The system implimented uses a pool of unions to track external
storage. The union contains an int for counting the references and
a pointer for forming a free list. The reference counts are
incremented and decremented atomically and so should be SMP friendly.
This system can track reference counts for any sort of external
storage.
Access to the reference counting stuff is now through macros defined
in mbuf.h, so it should be easier to make changes to the system in
the future.
The possibility of storing the reference count in one of the
referencing mbufs was considered, but was rejected 'cos it would
often leave extra mbufs allocated. Storing the reference count in
the cluster was also considered, but because the external storage
may not be a cluster this isn't an option.
The size of the pool of reference counters is available in the
stats provided by "netstat -m".
PR: 19866
Submitted by: Bosko Milekic <bmilekic@dsuper.net>
Reviewed by: alfred (glanced at by others on -net)
cards. This basically involves switching to the 12.4.13 firmware, plus
a couple of minor tweaks to the driver.
Also changed the jumbo buffer allocation scheme just a little to avoid
'failed to allocate jumbo buffer' conditions in certain cases.
a PCI memory mapped region, rman_get_bushandle() returns what happens
to be a kernel virtual address pointing to the base of the PCI shared
memory window. However this is not the behavior on all platforms:
the only thing you should do with the bushandle is pass it to the
bus_spare_read()/bus_space_write() routines. If you actually do want
the kernel virtual address of the base of the PCI memory window, you
need to use rman_get_virtual().
The problem is that at the moment, rman_get_virtual() returns a physical
address, which is bad. In order to get the kernel virtual address we
need, we have to play with it a little.
Presumeably this behavior will be changed, but in the meantime the
Tigon driver won't work. So for the moment, I'm adding a kludge to
make things happy on the alpha: the correct kernel virtual address
is calculated from the value returned by rman_get_virtual(). This
should be removed once rman_get_virtual() starts doing the right
thing.
This should make the Tigon actuall work on the alpha now.
critical mbuf fields to sane values. Simplify the use of ETHER_ALIGN to
enforce payload alignment, and turn it on on the x86 as well as alpha
since it helps with NFS which wants the payload to be longword aligned
even though the hardware doesn't require it.
This fixes a problem with the ti driver causing an unaligned access trap
on the Alpha due to m_adj() sometimes not setting the alignment correctly
because of incomplete mbuf initialization.
in ti_rxeof() instead. This doesn't really seem to provide much in the
way of a performance boost, and I'm pretty sure it can cause mbuf leakage
in some extreme cases.
positively not let ti_encap() fill up the TX ring all the way and wrap
around. This fixes a potential transmit lockup where a really fast
machine (or particular TX traffic pattern) can overrun the end of the
ring.
Reported by: John Plevyak <jplevyak@inktomi.com>
preparation for tsunami support. Previous chipsets' direct-mapped DMA
mask was always 1024*1024*1024. The Tsunami chipset needs it to be
2*1024*1024*1024
These changes should not affect the i386 port
Reviewed by: Doug Rabson <dfr@nlsystems.com>
bug in the stats accounting (nicSendBDs counter was bogus when TX ring was
configured to be in host memory).
Update if_tireg.h to look for new firmware fix level.
Networks Tigon 1 and Tigon 2 chipsets. There are a _lot_ of OEM'ed
gigabit ethernet adapters out there which use the Alteon chipset so
this driver covers a fair amount of hardware. I know that it works with
the Alteon AceNIC, 3Com 3c985 and Netgear GA620, however it should also
work with the DEC/Compaq EtherWORKS 1000, Silicon Graphics Gigabit
ethernet board, NEC Gigabit Ethernet board and maybe even the IBM and
and Sun boards. The Netgear board is the cheapest (~$350US) but still
yields fairly good performance.
Support is provided for jumbo frames with all adapters (just set the
MTU to something larger than 1500 bytes), as well as hardware multicast
filtering and vlan tagging (in conjunction with the vlan support in
-current, which I should merge into -stable soon). There are some hooks
for checksum offload support, but they're turned off for now since
FreeBSD doesn't have an officially sanctioned way to support checksum
offloading (yet).
I have not added the 'device ti0' entry to GENERIC since the driver
with all the firmware compiled in is quite large, and it doesn't really
fit into the category of generic hardware.