of vm_kmem_size that may occur if the system administrator has specified a
vm.vm_kmem_size tunable value that exceeds the hard cap.
PR: 162741
Submitted by: Adam McDougall
Reviewed by: bde@
MFC after: 3 weeks
The SYSCTL_NODE macro defines a list that stores all child-elements of
that node. If there's no SYSCTL_DECL macro anywhere else, there's no
reason why it shouldn't be static.
more general VM system interfaces. So, their implementation can now
reside in kern_malloc.c alongside the other functions that are declared
in malloc.h.
the unlikely event that sysctl_kmem_map_free() was performed on an
empty kmem map, it would incorrectly report the free space as zero.
Discussed with: avg
MFC after: 1 week
Also, express this new maximum as a fraction of the kernel's address
space size rather than a constant so that increasing KVA_PAGES will
automatically increase this maximum. As a side-effect of this change,
kern.maxvnodes will automatically increase by a proportional amount.
While I'm here ensure that this change doesn't result in an unintended
increase in maxpipekva on i386. Calculate maxpipekva based upon the
size of the kernel address space and the amount of physical memory
instead of the size of the kmem map. The memory backing pipes is not
allocated from the kmem map. It is allocated from its own submap of
the kernel map. In short, it has no real connection to the kmem map.
(In fact, the commit messages for the maxpipekva auto-sizing talk
about using the kernel map size, cf. r117325 and r117391, even though
the implementation actually used the kmem map size.) Although the
calculation is now done differently, the resulting value for
maxpipekva should remain almost the same on i386. However, on amd64,
the value will be reduced by 2/3. This is intentional. The recent
change to VM_KMEM_SIZE_SCALE on amd64 for the benefit of ZFS also had
the unnecessary side-effect of increasing maxpipekva. This change is
effectively restoring maxpipekva on amd64 to its prior value.
Eliminate init_param3() since it is no longer used.
sbuf_new_for_sysctl(9). This allows using an sbuf with a SYSCTL_OUT
drain for extremely large amounts of data where the caller knows that
appropriate references are held, and sleeping is not an issue.
Inspired by: rwatson
Add a drain function for struct sysctl_req, and use it for a variety
of handlers, some of which had to do awkward things to get a large
enough SBUF_FIXEDLEN buffer.
Note that some sysctl handlers were explicitly outputting a trailing
NUL byte. This behaviour was preserved, though it should not be
necessary.
Reviewed by: phk (original patch)
unexpected things in copyout(9) and so wiring the user buffer is not
sufficient to perform a copyout(9) while holding a random mutex.
Requested by: nwhitehorn
handlers, some of which had to do awkward things to get a large enough
FIXEDLEN buffer.
Note that some sysctl handlers were explicitly outputting a trailing NUL
byte. This behaviour was preserved, though it should not be necessary.
Reviewed by: phk
use-after-free over a longer time. Also release the backing pages of
a guarded allocation at free(9) time to reduce the overhead of using
memguard(9). Allow setting and varying the malloc type at run-time.
Add knobs to allow:
- randomly guarding memory
- adding un-backed KVA guard pages to detect underflow and overflow
- a lower limit on the size of allocations that are guarded
Reviewed by: alc
Reviewed by: brueffer, Ulrich Spörlein <uqs spoerlein net> (man page)
Silence from: -arch
Approved by: zml (mentor)
MFC after: 1 month
zones for each malloc bucket size. The purpose is to isolate
different malloc types into hash classes, so that any buffer overruns
or use-after-free will usually only affect memory from malloc types in
that hash class. This is purely a debugging tool; by varying the hash
function and tracking which hash class was corrupted, the intersection
of the hash classes from each instance will point to a single malloc
type that is being misused. At this point inspection or memguard(9)
can be used to catch the offending code.
Add MALLOC_DEBUG_MAXZONES=8 to -current GENERIC configuration files.
The suggestion to have this on by default came from Kostik Belousov on
-arch.
This code is based on work by Ron Steinke at Isilon Systems.
Reviewed by: -arch (mostly silence)
Reviewed by: zml
Approved by: zml (mentor)
a KASSERT to handle it. People are likely to turn off INVARIANTS RSN
and loading an old module can cause garbage-in here.
I saw the issue with an older nvidia driver (x11/nvidia-driver) loading
into a new kernel - a crash wasn't seen 'till sysctl_kern_malloc_stats().
I was lucky that mtp->ks_shortdesc was NULL and not something horrible.
While I'm here, KASSERT that malloc_uninit() isn't passed something that's
not in kmemstatistics.
MFC after: 3 weeks
kern_time.c:
- Unused variable `p'.
kern_thr.c:
- Variable `error' is always caught immediately, so no reason to
initialize it. There is no way that error != 0 at the end of
create_thread().
kern_sig.c:
- Unused variable `code'.
kern_synch.c:
- `rval' is always assigned in all different cases.
kern_rwlock.c:
- `v' is always overwritten with RW_UNLOCKED further on.
kern_malloc.c:
- `size' is always initialized with the proper value before being used.
kern_exit.c:
- `error' is always caught and returned immediately. abort2() never
returns a non-zero value.
kern_exec.c:
- `len' is always assigned inside the if-statement right below it.
tty_info.c:
- `td' is always overwritten by FOREACH_THREAD_IN_PROC().
Found by: LLVM's scan-build
backend kegs so it may source compatible memory from multiple backends.
This is useful for cases such as NUMA or different layouts for the same
memory type.
- Provide a new api for adding new backend kegs to secondary zones.
- Provide a new flag for adjusting the layout of zones to stagger
allocations better across cache lines.
Sponsored by: Nokia
used to request superpage alignment for the submap.
Request superpage alignment for the kmem_map.
Pass VMFS_ANY_SPACE instead of TRUE to vm_map_find(). (They are currently
equivalent but VMFS_ANY_SPACE is the new preferred spelling.)
Remove a stale comment from kmem_malloc().
after each SYSINIT() macro invocation. This makes a number of
lightweight C parsers much happier with the FreeBSD kernel
source, including cflow's prcc and lxr.
MFC after: 1 month
Discussed with: imp, rink
Probabilly, a general approach is not the better solution here, so we should
solve the sched_lock protection problems separately.
Requested by: alc
Approved by: jeff (mentor)
vmcnts. This can be used to abstract away pcpu details but also changes
to use atomics for all counters now. This means sched lock is no longer
responsible for protecting counts in the switch routines.
Contributed by: Attilio Rao <attilio@FreeBSD.org>
vm.kmem_size_min. Useful when using ZFS to make sure that vm.kmem size will
be at least 256mb (for example) without forcing a particular value via vm.kmem_size.
Approved by: njl (mentor)
Reviewed by: alc
counters of allocs/frees/use for each malloc type to calculating InUse,
MemUse, and Requests as displayed by the userspace vmstat -m. This is
more useful when debugging malloc(9)-related memory leaks, where the
count of allocs/frees may not usefully reflect that current memory
allocation (i.e., when highly variable size allocations occur with the
same malloc type, such as with contigmalloc).
MFC after: 3 days
Limitations observed by: scottl
the kernel malloc(9) state for vmstat -m. libmemstat is now used to
generate a machine-readable version which is converged by vmstat -m
into a human-readable version.
Not for MFC.
Releasing items from the mt_zone can not be done by a simple
uma_zfree() call since mt_zone is allocated with the UMA_ZONE_MALLOC
flag. Use uma_zfree_arg instead and supply the slab.
This bug caused panics in low memory situations on unloading kernel
modules containing MALLOC_DEFINE(..) statements.
Submitted by: ups
It detects both: buffer underflows and buffer overflows bugs at runtime
(on free(9) and realloc(9)) and prints backtraces from where memory was
allocated and from where it was freed.
Tested by: kris
- Provide tunable vm.memguard.desc, so one can specify memory type without
changing the code and recompiling the kernel.
- Allow to use memguard for kernel modules by providing sysctl
vm.memguard.desc, which can be changed to short description of memory
type before module is loaded.
- Move as much memguard code as possible to memguard.c.
- Add sysctl node vm.memguard. and move memguard-specific sysctl there.
- Add malloc_desc2type() function for finding memory type based on its
short description (ks_shortdesc field).
- Memory type can be changed (via vm.memguard.desc sysctl) only if it
doesn't exist (will be loaded later) or when no memory is allocated yet.
If there is allocated memory for the given memory type, return EBUSY.
- Implement two ways of memory types comparsion and make safer/slower the
default.
UMA_SLAB_MALLOC flag.
In some circumstances (I observed it when I was doing a lot of reallocs)
UMA_SLAB_MALLOC can be set even if us_keg != NULL.
If this is the case we have wonderful, silent data corruption, because less
data is copied to the newly allocated region than should be.
I'm not sure when this bug was introduced, it could be there undetected
for years now, as we don't have a lot of realloc(9) consumers and it was
hard to reproduce it...
...but what I know for sure, is that I don't want to know who introduce
the bug:) It took me two/three days to track it down (of course most of
the time I was looking for the bug in my own code).
available kernel malloc types. Quite useful for post-mortem debugging of
memory leaks without a dump device configured on a panicked box.
MFC after: 2 weeks
- increase number of allocations count only on successfull malloc(9),
so it doesn't confuse people;
- because we need to check if 'size > 0', hide 'mtsp->mts_memalloced += size;'
under the check as well, as for size=0 it is of course a no-op;
- avoid critical_enter()/critical_exit() in case of failure in
malloc_type_allocated() as there will be nothing to do.
OK'ed by: rwatson
MFC after: 2 days
statistics via a binary structure stream:
- Add structure 'malloc_type_stream_header', which defines a stream
version, definition of MAXCPUS used in the stream, and a number of
malloc_type records in the stream.
- Add structure 'malloc_type_header', which defines the name of the
malloc type being reported on.
- When the sysctl is queried, return a stream header, followed by a
series of type descriptions, each consisting of a type header
followed by a series of MAXCPUS malloc_type_stats structures holding
per-CPU allocation information. Typical values of MAXCPUS will be 1
(UP compiled kernel) and 16 (SMP compiled kernel).
This query mechanism allows user space monitoring tools to extract
memory allocation statistics in a machine-readable form, and to do so
at a per-CPU granularity, allowing monitoring of allocation patterns
across CPUs in order to better understand the distribution of work and
memory flow over multiple CPUs.
While here:
- Bump statistics width to uint64_t, and hard code using fixed-width
type in order to be more sure about structure layout in the stream.
We allocate and free a lot of memory.
- Add kmemcount, a counter of the number of registered malloc types,
in order to avoid excessive manual counting of types. Export via a
new sysctl to allow user-space code to better size buffers.
- De-XXX comment on no longer maintaining the high watermark in old
sysctl monitoring code.
A follow-up commit of libmemstat(3), a library to monitor kernel memory
allocation, will occur in the next few days. Likewise, similar changes
to UMA.