to TAILQs. Fix places which referenced these for no good reason
that I can see (the references remain, but were fixed to compile
again; they are still questionable).
existing mechanism uses a global queue for some buffers and the
vp->b_dirtyblkhd queue for others. This turns sequential writes into
randomly ordered writes to the server, affecting both read and write
performance. The existing mechanism also copes badly with hung
servers, tending to block accesses to other servers when all the iods
are waiting for a hung server.
The new mechanism uses a queue for each mount point. All asynchronous
i/o goes through this queue which preserves the ordering of requests.
A simple mechanism ensures that the iods are shared out fairly between
active mount points. This removes the sysctl variable vfs.nfs.dwrite
since the new queueing mechanism removes the old delayed write code
completely.
This should go into the 2.2 branch.
contents are discarded, including the cached seek cookies.
Unfortunately, if the directory was larger than NFS_DIRBLKSIZ, then
this confused nfs_readdirrpc(), making it appear as if the directory
was truncated.
Reviewed by: Karl Denninger <karl@Mcs.Net>
if a single process is performing a large number of requests (in this
case writing a large file). The writing process could monopolise the
recieve lock and prevent any other processes from recieving their
replies.
It also adds a new sysctl variable 'vfs.nfs.dwrite' which controls the
behaviour which originally pointed out the problem. When a process
writes to a file over NFS, it usually arranges for another process
(the 'iod') to perform the request. If no iods are available, then it
turns the write into a 'delayed write' which is later picked up by the
next iod to do a write request for that file. This can cause that
particular iod to do a disproportionate number of requests from a
single process which can harm performance on some NFS servers. The
alternative is to perform the write synchronously in the context of
the original writing process if no iod is avaiable for asynchronous
writing.
The 'delayed write' behaviour is selected when vfs.nfs.dwrite=1 and
the non-delayed behaviour is selected when vfs.nfs.dwrite=0. The
default is vfs.nfs.dwrite=1; if many people tell me that performance
is better if vfs.nfs.dwrite=0 then I will change the default.
Submitted by: Hidetoshi Shimokawa <simokawa@sat.t.u-tokyo.ac.jp>
/*
* Structure defined by POSIX.4 to be like a timeval.
*/
struct timespec {
time_t ts_sec; /* seconds */
long ts_nsec; /* and nanoseconds */
};
The correct names of the fields are tv_sec and tv_nsec.
Reminded by: James Drobina <jdrobina@infinet.com>
The interface into the "VMIO" system has changed to be more consistant
and robust. Essentially, it is now no longer necessary to call vn_open
to get merged VM/Buffer cache operation, and exceptional conditions
such as merged operation of VBLK devices is simpler and more correct.
This code corrects a potentially large set of problems including the
problems with ktrace output and loaded systems, file create/deletes,
etc.
Most of the changes to NFS are cosmetic and name changes, eliminating
a layer of subroutine calls. The direct calls to vput/vrele have
been re-instituted for better cross platform compatibility.
Reviewed by: davidg
rick@snowhite.cis.uoguelph.ca:
1. Clear B_NEEDCOMMIT in nfs_write to make sure that dirty data is
correctly send to the server. If a buffer was dirtied when it was in
the B_DELWRI+B_NEEDCOMMIT state, the state of the buffer was left
unchanged and when the buffer was later cleaned, just a commit rpc was
made to the server to complete the previous write. Clearing
B_NEEDCOMMIT ensures that another write is made to the server.
2. If a server returned a server (for whatever reason) returned an
answer to a write RPC that implied that fewer bytes than requested
were written, bad things would happen.
3. The setattr operation passed on the atime in stead of the mtime to
the server. The fix is trivial.
4. XIDs always started at 0, but this caused some servers (older DEC
OSF/1 3.0 so I've been told) who had very long-lasting XID caches to
get confused if, after a reboot of a BSD client, RPCs came in with a
XID that had in the past been used before from that client. Patch is
to use the current time in seconds as a starting point for XIDs. The
patch below is not perfect, because it requires the root fs to be
mounted first. This is because of the check BSD systems do, comparing
FS time to system time.
Reviewed by: Bruce Evans, Terry Lambert.
Obtained from: frank@fwi.uva.nl (Frank van der Linden) via rick@snowhite.cis.uoguelph.ca
pr_usrreq mechanism which was poorly designed and error-prone. This
commit renames pr_usrreq to pr_ousrreq so that old code which depended on it
would break in an obvious manner. This commit also implements the new
interface for TCP, although the old function is left as an example
(#ifdef'ed out). This commit ALSO fixes a longstanding bug in the
TCP timer processing (introduced by davidg on 1995/04/12) which caused
timer processing on a TCB to always stop after a single timer had
expired (because it misinterpreted the return value from tcp_usrreq()
to indicate that the TCB had been deleted). Finally, some code
related to polling has been deleted from if.c because it is not
relevant t -current and doesn't look at all like my current code.
Poul mentioned that he thought this was some kind of timing problem, and
that started me thinking. After a little poking around, I found that
nfs_timer() was completely disabled when NFS_NOSERVER was #defined.
But after looking at nfs_timer(), it seemed like it was something
required by both the client and server code, and disabling it outright
just didn't seem to make any sense. Parts of it relate only to the
NFS server side code, so I disabled those, but I re-enabled the rest
of the function and made sure that it would be called from nfs_init()
(in nfs_subs.c).
With nfs_timer() re-enabled, everything seems to work again. The only
other changes I made were to #ifdef away some variable declarations
in the NFS_NOSERVER case so that gcc would stop complaining about
unused variables.
Reviewed by: phk
Submitted by: Bill Paul <wpaul@skynet.ctr.columbia.edu>
process won't possibly block before filling in the fsnode pointer (v_data)
which might be dereferenced during a sync since the vnode is put on the
mnt_vnodelist by getnewvnode.
Pointed out by Matt Day <mday@artisoft.com>
a panic due to an attaempt to allocate a buffer for a terabyte or
so of data when an attempt is made to create sparse data (e.g.
a holey file) more than 1 block past the end of the file.
Note: some other areas of this code need to be looked at,
since they might cause problems when the file size exceeds 2GB,
due to storing results in ints when the computations are being
done with quad sized variables.
Reviewed by: bde
Speed up for vfs_bio -- addition of a routine bqrelse to greatly diminish
overhead for merged cache.
Efficiency improvement for vfs_cluster. It used to do alot of redundant
calls to cluster_rbuild.
Correct the ordering for vrele of .text and release of credentials.
Use the selective tlb update for 486/586/P6.
Numerous fixes to the size of objects allocated for files. Additionally,
fixes in the various pagers.
Fixes for proper positioning of vnode_pager_setsize in msdosfs and ext2fs.
Fixes in the swap pager for exhausted resources. The pageout code
will not as readily thrash.
Change the page queue flags (PG_ACTIVE, PG_INACTIVE, PG_FREE, PG_CACHE) into
page queue indices (PQ_ACTIVE, PQ_INACTIVE, PQ_FREE, PQ_CACHE),
thereby improving efficiency of several routines.
Eliminate even more unnecessary vm_page_protect operations.
Significantly speed up process forks.
Make vm_object_page_clean more efficient, thereby eliminating the pause
that happens every 30seconds.
Make sequential clustered writes B_ASYNC instead of B_DELWRI even in the
case of filesystems mounted async.
Fix a panic with busy pages when write clustering is done for non-VMIO
buffers.
structs and prototypes for syscalls.
Ifdefed duplicated decentralized declarations of args structs. It's
convenient to have this visible but they are hard to maintain. Some
are already different from the central declarations. 4.4lite2 puts
them in comments in the function headers but I wanted to avoid the
large changes for that.
it 1138 times (:-() in casts and a few more times in declarations.
This change is null for the i386.
The type has to be `typedef int vop_t(void *)' and not `typedef
int vop_t()' because `gcc -Wstrict-prototypes' warns about the
latter. Since vnode op functions are called with args of different
(struct pointer) types, neither of these function types is any use
for type checking of the arg, so it would be preferable not to use
the complete function type, especially since using the complete
type requires adding 1138 casts to avoid compiler warnings and
another 40+ casts to reverse the function pointer conversions before
calling the functions.
These functions went away:
enosys (hasn't been used for some time)
enxio
enodev
enoioctl (was used only once, actually for a vop)
if_tun.c:
Continued cleaning up...
conf.h:
Probably fixed the type of d_reset_t. It is hard to tell the correct
type because there are no non-dummy device reset functions.
Removed last vestige of ambiguous sleep message strings.
filesystem layer, as was done in lite-2. Merged in some other cosmetic
changes while I was at it. Rewrote most of msdosfs_access() to be more
like ufs_access() and to include the FS read-only check.
Obtained from: partially from 4.4BSD-lite2
nfsm_rpchead() has been called with the wrong number of args and misplaced
args since someone added new args in the middle for nfsv3.
Here's another one that would be important on 64-bit systems. VOP_READDIR
takes a `u_int **cookies' arg.
Submitted by: Bruce Evans <bde@zeta.org.au>
wrong vp's ops vector being used by changing the VOP_LINK's argument order.
The special-case hack doesn't go far enough and breaks the generic
bypass routine used in some non-leaf filesystems. Pointed out by Kirk
McKusick.
when it is moved to an NFS filesystem from from another filesystem and /bin/mv
failed to set the file ownership during the move.
I believe that this bug is present in STABLE but I have not tested it. The fix
would be the same in STABLE even though the code has changed quite considerably
in CURRENT.
the problem "when a file is truncated on the server after being written on
a client under NFSv3, the client doesn't see the size drop to zero".
(As you noted, the problem is that NMODIFIED wasn't being cleared by nfs_close
when it flushed the buffers. After checking through the code, the only place
where NMODIFIED was used to test for the possibility of dirty blocks was in
nfs_setattr(). The two cases are safe to do when there aren't dirty blocks,
so I just took out the tests. Unfortunately, testing for
v_dirtyblkhd.lh_first being non-null is not sufficient, since there are
times when the code moves blocks to the clean list and then back to the
dirty list.)
Submitted by: rick@snowhite.cis.uoguelph.ca
proc or any VM system structure will have to be rebuilt!!!
Much needed overhaul of the VM system. Included in this first round of
changes:
1) Improved pager interfaces: init, alloc, dealloc, getpages, putpages,
haspage, and sync operations are supported. The haspage interface now
provides information about clusterability. All pager routines now take
struct vm_object's instead of "pagers".
2) Improved data structures. In the previous paradigm, there is constant
confusion caused by pagers being both a data structure ("allocate a
pager") and a collection of routines. The idea of a pager structure has
escentially been eliminated. Objects now have types, and this type is
used to index the appropriate pager. In most cases, items in the pager
structure were duplicated in the object data structure and thus were
unnecessary. In the few cases that remained, a un_pager structure union
was created in the object to contain these items.
3) Because of the cleanup of #1 & #2, a lot of unnecessary layering can now
be removed. For instance, vm_object_enter(), vm_object_lookup(),
vm_object_remove(), and the associated object hash list were some of the
things that were removed.
4) simple_lock's removed. Discussion with several people reveals that the
SMP locking primitives used in the VM system aren't likely the mechanism
that we'll be adopting. Even if it were, the locking that was in the code
was very inadequate and would have to be mostly re-done anyway. The
locking in a uni-processor kernel was a no-op but went a long way toward
making the code difficult to read and debug.
5) Places that attempted to kludge-up the fact that we don't have kernel
thread support have been fixed to reflect the reality that we are really
dealing with processes, not threads. The VM system didn't have complete
thread support, so the comments and mis-named routines were just wrong.
We now use tsleep and wakeup directly in the lock routines, for instance.
6) Where appropriate, the pagers have been improved, especially in the
pager_alloc routines. Most of the pager_allocs have been rewritten and
are now faster and easier to maintain.
7) The pagedaemon pageout clustering algorithm has been rewritten and
now tries harder to output an even number of pages before and after
the requested page. This is sort of the reverse of the ideal pagein
algorithm and should provide better overall performance.
8) Unnecessary (incorrect) casts to caddr_t in calls to tsleep & wakeup
have been removed. Some other unnecessary casts have also been removed.
9) Some almost useless debugging code removed.
10) Terminology of shadow objects vs. backing objects straightened out.
The fact that the vm_object data structure escentially had this
backwards really confused things. The use of "shadow" and "backing
object" throughout the code is now internally consistent and correct
in the Mach terminology.
11) Several minor bug fixes, including one in the vm daemon that caused
0 RSS objects to not get purged as intended.
12) A "default pager" has now been created which cleans up the transition
of objects to the "swap" type. The previous checks throughout the code
for swp->pg_data != NULL were really ugly. This change also provides
the rudiments for future backing of "anonymous" memory by something
other than the swap pager (via the vnode pager, for example), and it
allows the decision about which of these pagers to use to be made
dynamically (although will need some additional decision code to do
this, of course).
13) (dyson) MAP_COPY has been deprecated and the corresponding "copy
object" code has been removed. MAP_COPY was undocumented and non-
standard. It was furthermore broken in several ways which caused its
behavior to degrade to MAP_PRIVATE. Binaries that use MAP_COPY will
continue to work correctly, but via the slightly different semantics
of MAP_PRIVATE.
14) (dyson) Sharing maps have been removed. It's marginal usefulness in a
threads design can be worked around in other ways. Both #12 and #13
were done to simplify the code and improve readability and maintain-
ability. (As were most all of these changes)
TODO:
1) Rewrite most of the vnode pager to use VOP_GETPAGES/PUTPAGES. Doing
this will reduce the vnode pager to a mere fraction of its current size.
2) Rewrite vm_fault and the swap/vnode pagers to use the clustering
information provided by the new haspage pager interface. This will
substantially reduce the overhead by eliminating a large number of
VOP_BMAP() calls. The VOP_BMAP() filesystem interface should be
improved to provide both a "behind" and "ahead" indication of
contiguousness.
3) Implement the extended features of pager_haspage in swap_pager_haspage().
It currently just says 0 pages ahead/behind.
4) Re-implement the swap device (swstrategy) in a more elegant way, perhaps
via a much more general mechanism that could also be used for disk
striping of regular filesystems.
5) Do something to improve the architecture of vm_object_collapse(). The
fact that it makes calls into the swap pager and knows too much about
how the swap pager operates really bothers me. It also doesn't allow
for collapsing of non-swap pager objects ("unnamed" objects backed by
other pagers).
that call vnode_pager_alloc() so that a failure return can be dealt with.
This fixes a panic seen on NFS clients when a file being opened is deleted
on the server before the open completes.
2) Removed unnecessary vm_object_lookup()/pager_cache(object, TRUE) pairs
after vnode_pager_alloc() calls - the object is already guaranteed to be
persistent.
3) Removed some gratuitous casts.
The version 2 support has been tested (client+server) against FreeBSD-2.0,
IRIX 5.3 and FreeBSD-current (using a loopback mount). The version 2 support
is stable AFAIK.
The version 3 support has been tested with a loopback mount and minimally
against an IRIX 5.3 server. It needs more testing and may have problems.
I have patched amd to support the new variable length filehandles although
it will still only use version 2 of the protocol.
Before booting a kernel with these changes, nfs clients will need to at least
build and install /usr/sbin/mount_nfs. Servers will need to build and
install /usr/sbin/mountd.
NFS diskless support is untested.
Obtained from: Rick Macklem <rick@snowhite.cis.uoguelph.ca>
is an ambiguity in the NFS version 2 protocol.
VREG should be taken literally as a regular file. If a
server intents to return some type information differently
in the upper bits of the mode field (e.g. for sockets, or
FIFOs), NFSv2 mandates fa_type to be VNON. Anyway, we
leave the examination of the mode bits even in the VREG
case to avoid breakage for bogus servers, but we make sure
that there are actually type bits set in the upper part of
fa_mode (and failing that, trust the va_type field).
NFSv3 cleared the issue, and requires fa_mode to not
contain any type information (while also introduing sockets
and FIFOs for fa_type).
The fix has been tested against a variety of NFS servers.
It fixes problems with the ``Tropic'' NFS server for Windows,
while apparently not breaking anything.
Pointed-out by: scott@zorch.sf-bay.org (Scott Hazen Mueller)
handled correctly. This would manifest itself as "object deallocated too
many times" panics and perhaps other strange inconsistencies on NFS servers.
Reviewed by: me, of course
Submitted by: John Dyson
1) Files weren't properly synced on filesystems other than UFS. In some
cases, this lead to lost data. Most likely would be noticed on NFS.
The fix is to make the VM page sync/object_clean general rather than
in each filesystem.
2) Mixing regular and mmaped file I/O on NFS was very broken. It caused
chunks of files to end up as zeroes rather than the intended contents.
The fix was to fix several race conditions and to kludge up the
"b_dirtyoff" and "b_dirtyend" that NFS relies upon - paying attention
to page modifications that occurred via the mmapping.
Reviewed by: David Greenman
Submitted by: John Dyson
require specific partitions be mentioned in the kernel config
file ("swap on foo" is now obsolete).
From Poul-Henning:
The visible effect is this:
As default, unless
options "NSWAPDEV=23"
is in your config, you will have four swap-devices.
You can swapon(2) any block device you feel like, it doesn't have
to be in the kernel config.
There is a performance/resource win available by getting the NSWAPDEV right
(but only if you have just one swap-device ??), but using that as default
would be too restrictive.
The invisible effect is that:
Swap-handling disappears from the $arch part of the kernel.
It gets a lot simpler (-145 lines) and cleaner.
Reviewed by: John Dyson, David Greenman
Submitted by: Poul-Henning Kamp, with minor changes by me.
1) Rewrote screwy code that uses an incore buffer without making it busy.
2) Use B_CACHE instead of B_DONE in cases where it is appropriate.
3) Minor code optimization.
This *might* fix kern/345 submitted by Heikki Suonsivu.
happen normally when there is heavy write activity to a file since the
vnode isn't locked (NFS plays fast and loose with vnode locks). This change
"fixes" PR#267.
VFCF_NETWORK (this FS goes over the net)
VFCF_READONLY (read-write mounts do not make any sense)
VFCF_SYNTHETIC (data in this FS is not real)
VFCF_LOOPBACK (this FS aliases something else)
cd9660 is readonly; nullfs, umapfs, and union are loopback; NFS is netowkr;
procfs, kernfs, and fdesc are synthetic.
in serious system instability. Changed a B_INVAL to a B_NOCACHE so that
buffer data is properly disposed of.
Submitted by: John Dyson, Rick Macklin, and ohki@gssm.otsuka.tsukuba.ac.jp
much higher filesystem I/O performance, and much better paging performance. It
represents the culmination of over 6 months of R&D.
The majority of the merged VM/cache work is by John Dyson.
The following highlights the most significant changes. Additionally, there are
(mostly minor) changes to the various filesystem modules (nfs, msdosfs, etc) to
support the new VM/buffer scheme.
vfs_bio.c:
Significant rewrite of most of vfs_bio to support the merged VM buffer cache
scheme. The scheme is almost fully compatible with the old filesystem
interface. Significant improvement in the number of opportunities for write
clustering.
vfs_cluster.c, vfs_subr.c
Upgrade and performance enhancements in vfs layer code to support merged
VM/buffer cache. Fixup of vfs_cluster to eliminate the bogus pagemove stuff.
vm_object.c:
Yet more improvements in the collapse code. Elimination of some windows that
can cause list corruption.
vm_pageout.c:
Fixed it, it really works better now. Somehow in 2.0, some "enhancements"
broke the code. This code has been reworked from the ground-up.
vm_fault.c, vm_page.c, pmap.c, vm_object.c
Support for small-block filesystems with merged VM/buffer cache scheme.
pmap.c vm_map.c
Dynamic kernel VM size, now we dont have to pre-allocate excessive numbers of
kernel PTs.
vm_glue.c
Much simpler and more effective swapping code. No more gratuitous swapping.
proc.h
Fixed the problem that the p_lock flag was not being cleared on a fork.
swap_pager.c, vnode_pager.c
Removal of old vfs_bio cruft to support the past pseudo-coherency. Now the
code doesn't need it anymore.
machdep.c
Changes to better support the parameter values for the merged VM/buffer cache
scheme.
machdep.c, kern_exec.c, vm_glue.c
Implemented a seperate submap for temporary exec string space and another one
to contain process upages. This eliminates all map fragmentation problems
that previously existed.
ffs_inode.c, ufs_inode.c, ufs_readwrite.c
Changes for merged VM/buffer cache. Add "bypass" support for sneaking in on
busy buffers.
Submitted by: John Dyson and David Greenman
If nd->swap_nblks is zero in nfs_mountroot(), then the system
comes up without initializing swapdev_vp to an actual vnode pointer.
The swap pager assumes a non-NULL value for swapdev_vp.
The fix is to try initializing local swap if no NFS swap space
is specified.
- Make a number of filesystems work again when they are statically compiled
(blush)
- FIFOs are no longer optional; ``options FIFO'' removed from distributed
config files.
machdep.c:
Changed printf's a little and call vfs_unmountall() if the sync was
successful.
cd9660_vfsops.c, ffs_vfsops.c, nfs_vfsops.c, lfs_vfsops.c:
Allow dismount of root FS. It is now disallowed at a higher level.
vfs_conf.c:
Removed unused rootfs global.
vfs_subr.c:
Added new routines vfs_unmountall and vfs_unmountroot. Filesystems
are now dismounted if the machine is properly rebooted.
ffs_vfsops.c:
Toggle clean bit at the appropriate places. Print warning if an
unclean FS is mounted.
ffs_vfsops.c, lfs_vfsops.c:
Fix bug in selecting proper flags for VOP_CLOSE().
vfs_syscalls.c:
Disallow dismounting root FS via umount syscall.
- Delete redundant declarations.
- Add -Wredundant-declarations to Makefile.i386 so they don't come back.
- Delete sloppy COMMON-style declarations of uninitialized data in
header files.
- Add a few prototypes.
- Clean up warnings resulting from the above.
NB: ioconf.c will still generate a redundant-declaration warning, which
is unavoidable unless somebody volunteers to make `config' smarter.
use it in NFS. This is required both for diskless support and for POSIX
compliance. Note: the support in NFS is only for the local node.
Submitted by: based on work originally done by Yuval Yurom