Implement a subset of the multiboot specification in order to boot Xen
and a FreeBSD Dom0 from the FreeBSD bootloader. This multiboot
implementation is tailored to boot Xen and FreeBSD Dom0, and it will
most surely fail to boot any other multiboot compilant kernel.
In order to detect and boot the Xen microkernel, two new file formats
are added to the bootloader, multiboot and multiboot_obj. Multiboot
support must be tested before regular ELF support, since Xen is a
multiboot kernel that also uses ELF. After a multiboot kernel is
detected, all the other loaded kernels/modules are parsed by the
multiboot_obj format.
The layout of the loaded objects in memory is the following; first the
Xen kernel is loaded as a 32bit ELF into memory (Xen will switch to
long mode by itself), after that the FreeBSD kernel is loaded as a RAW
file (Xen will parse and load it using it's internal ELF loader), and
finally the metadata and the modules are loaded using the native
FreeBSD way. After everything is loaded we jump into Xen's entry point
using a small trampoline. The order of the multiboot modules passed to
Xen is the following, the first module is the RAW FreeBSD kernel, and
the second module is the metadata and the FreeBSD modules.
Since Xen will relocate the memory position of the second
multiboot module (the one that contains the metadata and native
FreeBSD modules), we need to stash the original modulep address inside
of the metadata itself in order to recalculate its position once
booted. This also means the metadata must come before the loaded
modules, so after loading the FreeBSD kernel a portion of memory is
reserved in order to place the metadata before booting.
In order to tell the loader to boot Xen and then the FreeBSD kernel the
following has to be added to the /boot/loader.conf file:
xen_cmdline="dom0_mem=1024M dom0_max_vcpus=2 dom0pvh=1 console=com1,vga"
xen_kernel="/boot/xen"
The first argument contains the command line that will be passed to the Xen
kernel, while the second argument is the path to the Xen kernel itself. This
can also be done manually from the loader command line, by for example
typing the following set of commands:
OK unload
OK load /boot/xen dom0_mem=1024M dom0_max_vcpus=2 dom0pvh=1 console=com1,vga
OK load kernel
OK load zfs
OK load if_tap
OK load ...
OK boot
Sponsored by: Citrix Systems R&D
Reviewed by: jhb
Differential Revision: https://reviews.freebsd.org/D517
For the Forth bits:
Submitted by: Julien Grall <julien.grall AT citrix.com>
crowded as we now are at about 70k. Bump the limit to 1MB instead
which is still quite a reasonable limit and allows for future growth
of this file and possible future expansion to additional data.
MFC After: 2 weeks
arguments from type,filename to filename,type to be consistant with other
public file_whatever() functions, and change it to return a pointer to
the preloaded_file struct describing the file. Adjust existing callers.
After digging through more carefully, it looks like there's
no real need to have the DTB in the module directory.
So we can simplify a lot: Just copy DTB into local heap
for "fdt addr" and U-Boot integration, drop all the extra
COPYIN() calls.
I've left one final COPYIN() to update the in-kernel DTB
for consistency with how this code used to work, but I'm
no longer convinced it's appropriate here.
I've also remove the mem_load_raw() utility that I added
to boot/common/module.c with r247045 since it's no longer
necessary.
This will be used by some upcoming changes to loader(8) FDT
handling to allow it to use an FDT provided by an earlier
boot stage the same as an FDT loaded from disk.
to the l_load() method in the file_formats structure, while being passed
an address as an argument (dest). With file_load() calling arch_loadaddr()
now, this bug is a little bit more significant.
Spotted by: nyan@ (nice catch!)
1. arch_loadaddr - used by platform code to adjust the address at which
the object gets loaded. Implement PC98 using this new interface instead
of using conditional compilation. For ELF objects the ELF header is
passed as the data pointer. For raw files it's the filename. Note that
ELF objects are first considered as raw files.
2. arch_loadseg - used by platform code to keep track of actual segments,
so that (instruction) caches can be flushed or translations can be
created. Both the ELF header as well as the program header are passed
to allow platform code to treat the kernel proper differently from any
additional modules and to have all the relevant details of the loaded
segment (e.g. protection).
when checking whether it's greater than a struct stat st_size in order
to also catch the case when st_size is -1. Previously this check didn't
trigger on sparc64 when st_size is -1 (as it's the case for a file on
a bzipfs, TFTP server etc.), causing the content of the linker hints
file to be copied to memory referenced by a null-pointer.
PR: 91231
MFC after: 1 week
up the module_path string, we would walk one past the end of the buffer.
This hurting ia64 originally, but it was probably also happening on i386
occasionally as well. The effects were usually harmless, it would add
bogus "binary" search directories to the places it actually looked for
files.
file is processed by passing its name in argv[1]:
return(mod_loadobj(typestr, argv[1]));
however, it is not tested to see if argv[1] actually is defined.
At best, mod_loadobj() near line 244 returns an error like
"can't find 'garbage'" but if the "filename" entered is sufficiently
long, some buffer gets overrun. Of course, "load -t filename" is
actually a typo because we meant to type "load -t mfs_root filename";
nevertheless, a hung machine seems like too harsh a punishment for
such a small typo...
PR: i386/27693
Submitted by: Adrian Steinmann <ast@marabu.ch>
MFC after: 1 week
gets the name from the environment variable kernelname, which is set
when a kernel is loaded. For this reason, autoboot will _first_ try
to load a kernel, and only proceed with the wait prompt after that
succeeds. If it fails, it will abort immediately.
While I understand some may think this behavior undesirable, I think
it is, overall, the best thing to do, even if we do not consider the
aesthetic issue. Notice that anyone using the default loader.rc
already has the kernel loaded before autoboot.
On unload, unset kernelname.
Separate the code that tries to load a kernel from the list of options
to the function loadakernel(). It is used by both boot() and
autoboot().
Also, unbreak the breakage introduced at the last revision of module.c.
This changes the semantics of mod_searchfile() (and mod_searchmodule())
to make the caller's responsibility freeing the buffer returned. This
is different from other functions in loader's code, and was done as a
fix for kern/9631. If someone wants to revert this to the original
behavior, don't forget to fix kern/9631 in another way.
This should also fix bin/10462, which was introduced as a result of the
first try at kern/9631 (module.c last revision).
PR: bin/10462
Submitted by: Takanori Saneto <sanewo@ba2.so-net.ne.jp>
problems in case a wrong option was given previously, and no option
is given to the next command.
PR: kern/9371
Submitted by: "Daniel C. Sobral" <dcs@newsguy.com>
* Fix a raft of warnings, printf and otherwise.
* Allocate the correct amount in mod_searchmodule to prevent an overflow.
* Fix the makefiles so they work outside my home directory (oops).
- Use format-independant module allocator.
- Conditionalise ISA PnP support.
- Simplify PnP enumerator interface.
- Improve module/object searching.
- Add missing depend/install targets in BTX makefiles.
- Pass the kernel environment and module data in extended bootinfo fields.
- Add a pointer to the end of the kernel + modules in bootinfo.
- Fix parsing of old-style kernel arguments.
- Move some startup code from MD to MI sections
- Add a 'copyout' and some copyout-related functions. These will be
obsoleted when BTX is available for the 386 and the kernel load
area becomes directly addressable.
- Add the ability load an arbitrary file as a module, associating
and arbitrary type string with it. This can be used eg. for loading
splash-screen images etc.
- Add KLD module dependancy infrastructure. We know how to look for
dependancies inside KLD modules, how to resolve these dependancies
and what to do if things go wrong. Only works for a.out at the
moment, due to lack of an MI ELF loader. Attach KLD module information
to loaded modules as metadata, but don't pass it to the kernel (it
can find it itself).
- Load a.out KLD modules on a page boundary. Only pad the a.out BSS
for the kernel, as it may want to throw symbols away. (We might want
to do this for KLD modules too.)
- Allow commands to be hidden from the '?' display, to avoid cluttering
it with things like 'echo'. Add 'echo'.
- Bring the 'prompt' command into line with the parser syntax.
- Fix the verbose 'ls'; it was using an uninitialised stack variable.
- Add a '-v' flag to 'lsmod' to have it display module metadata as well
(not terribly useful for the average user)
- Support a 'module searchpath' for required modules.
- The bootstrap file on i386 is now called 'loader' to permit the
/boot directory to use that name.
- Discard the old i386 pread() function, as it's replaced by
arch_readin()
- Implement a new copyin/readin interface for loading modules.
This allows the module loaders to become MI, reducing code duplication.
- Simplify the search for an image activator for the loaded kernel.
- Use the common module management code for all module metadata.
- Add an 'unload' command that throws everything away.
- Move the a.out module loader to MI code, add support for a.out
kld modules.
Submitted by: Alpha changes fixed by Doug Rabson <dfr@freebsd.org>
'three-stage' bootstrap.
There are a number of caveats with the code in its current state:
- The i386 bootstrap only supports booting from a floppy.
- The kernel and kld do not yet know how to deal with the extended
information and module summary passed in.
- PnP-based autodetection and demand loading of modules is not implemented.
- i386 ELF kernel loading is not ready yet.
- The i386 bootstrap is loaded via an ugly blockmap.
On the alpha, both net- and disk-booting (SRM console machines only) is
supported. No blockmaps are used by this code.
Obtained from: Parts from the NetBSD/i386 standalone bootstrap.