gpart(8) has functionality to change the label of an GPT partition.
This functionality works like it should, however, after a label change
the /dev/gpt/ entries remain unchanged. glabel(8) status output remains
unchanged. The change only takes effect after a reboot.
PR: 162690
Submitted by: sub.mesa@gmail, Ben RUBSON <ben.rubson@gmail.com>, ae
Reviewed by: allanjude, bapt, bcr
MFC after: 6 weeks.
Differential Revision: https://reviews.freebsd.org/D9935
with geom_flashmap(4) and teach it about MMC for slicing enhanced
user data area partitions. The FDT slicer still is the default for
CFI, NAND and SPI flash on FDT-enabled platforms.
- In addition to a device_t, also pass the name of the GEOM provider
in question to the slicers as a single device may provide more than
provider.
- Build a geom_flashmap.ko.
- Use MODULE_VERSION() so other modules can depend on geom_flashmap(4).
- Remove redundant/superfluous GEOM routines that either do nothing
or provide/just call default GEOM (slice) functionality.
- Trim/adjust includes
Submitted by: jhibbits (RouterBoard bits)
Reviewed by: jhibbits
The PBKDF2 in sys/geom/eli/pkcs5v2.c is around half the speed it could be
GELI's PBKDF2 uses a simple benchmark to determine a number of iterations
that will takes approximately 2 seconds. The security provided is actually
half what is expected, because an attacker could use the optimized
algorithm to brute force the key in half the expected time.
With this change, all newly generated GELI keys will be approximately 2x
as strong. Previously generated keys will talk half as long to calculate,
resulting in faster mounting of encrypted volumes. Users may choose to
rekey, to generate a new key with the larger default number of iterations
using the geli(8) setkey command.
Security of existing data is not compromised, as ~1 second per brute force
attempt is still a very high threshold.
PR: 202365
Original Research: https://jbp.io/2015/08/11/pbkdf2-performance-matters/
Submitted by: Joe Pixton <jpixton@gmail.com> (Original Version), jmg (Later Version)
Reviewed by: ed, pjd, delphij
Approved by: secteam, pjd (maintainer)
MFC after: 2 weeks
Differential Revision: https://reviews.freebsd.org/D8236
Don't start switcher kproc until the first GEOM is created.
Reviewed by: pjd
MFC after: 1 month
Differential Revision: https://reviews.freebsd.org/D8576
Some g_raid tasters attempt metadata reads in multiples of the provider
sectorsize. Reads larger than MAXPHYS are invalid, so detect and abort
in such situations.
Spiritually similar to r217305 / PR 147851.
PR: 214721
Sponsored by: Dell EMC Isilon
With clang 4.0.0, I'm getting the following warnings:
sys/geom/vinum/geom_vinum_state.c:186:7: error: logical not is only
applied to the left hand side of this bitwise operator
[-Werror,-Wlogical-not-parentheses]
if (!flags & GV_SETSTATE_FORCE)
^ ~
The logical not operator should obiously be called after masking.
Reviewed by: mav, pfg
MFC after: 3 days
Differential Revision: https://reviews.freebsd.org/D9093
Changes include modifications in kernel crash dump routines, dumpon(8) and
savecore(8). A new tool called decryptcore(8) was added.
A new DIOCSKERNELDUMP I/O control was added to send a kernel crash dump
configuration in the diocskerneldump_arg structure to the kernel.
The old DIOCSKERNELDUMP I/O control was renamed to DIOCSKERNELDUMP_FREEBSD11 for
backward ABI compatibility.
dumpon(8) generates an one-time random symmetric key and encrypts it using
an RSA public key in capability mode. Currently only AES-256-CBC is supported
but EKCD was designed to implement support for other algorithms in the future.
The public key is chosen using the -k flag. The dumpon rc(8) script can do this
automatically during startup using the dumppubkey rc.conf(5) variable. Once the
keys are calculated dumpon sends them to the kernel via DIOCSKERNELDUMP I/O
control.
When the kernel receives the DIOCSKERNELDUMP I/O control it generates a random
IV and sets up the key schedule for the specified algorithm. Each time the
kernel tries to write a crash dump to the dump device, the IV is replaced by
a SHA-256 hash of the previous value. This is intended to make a possible
differential cryptanalysis harder since it is possible to write multiple crash
dumps without reboot by repeating the following commands:
# sysctl debug.kdb.enter=1
db> call doadump(0)
db> continue
# savecore
A kernel dump key consists of an algorithm identifier, an IV and an encrypted
symmetric key. The kernel dump key size is included in a kernel dump header.
The size is an unsigned 32-bit integer and it is aligned to a block size.
The header structure has 512 bytes to match the block size so it was required to
make a panic string 4 bytes shorter to add a new field to the header structure.
If the kernel dump key size in the header is nonzero it is assumed that the
kernel dump key is placed after the first header on the dump device and the core
dump is encrypted.
Separate functions were implemented to write the kernel dump header and the
kernel dump key as they need to be unencrypted. The dump_write function encrypts
data if the kernel was compiled with the EKCD option. Encrypted kernel textdumps
are not supported due to the way they are constructed which makes it impossible
to use the CBC mode for encryption. It should be also noted that textdumps don't
contain sensitive data by design as a user decides what information should be
dumped.
savecore(8) writes the kernel dump key to a key.# file if its size in the header
is nonzero. # is the number of the current core dump.
decryptcore(8) decrypts the core dump using a private RSA key and the kernel
dump key. This is performed by a child process in capability mode.
If the decryption was not successful the parent process removes a partially
decrypted core dump.
Description on how to encrypt crash dumps was added to the decryptcore(8),
dumpon(8), rc.conf(5) and savecore(8) manual pages.
EKCD was tested on amd64 using bhyve and i386, mipsel and sparc64 using QEMU.
The feature still has to be tested on arm and arm64 as it wasn't possible to run
FreeBSD due to the problems with QEMU emulation and lack of hardware.
Designed by: def, pjd
Reviewed by: cem, oshogbo, pjd
Partial review: delphij, emaste, jhb, kib
Approved by: pjd (mentor)
Differential Revision: https://reviews.freebsd.org/D4712
It is quite specific mode of operation without storing on-disk metadata.
It can be useful in some cases in combination with some external control
tools handling mirror creation and disks hot-plug.
MFC after: 2 weeks
Sponsored by: iXsystems, Inc.
Upstream the BUF_TRACKING and FULL_BUF_TRACKING buffer debugging code.
This can be handy in tracking down what code touched hung bios and bufs
last. The full history is especially useful, but adds enough bloat that
it shouldn't be enabled in release builds.
Function names (or arbitrary string constants) are tracked in a
fixed-size ring in bufs. Bios gain a pointer to the upper buf for
tracking. SCSI CCBs gain a pointer to the upper bio for tracking.
Reviewed by: markj
Sponsored by: Dell EMC Isilon
Differential Revision: https://reviews.freebsd.org/D8366
Normally gmirror allows colliding requests to proceed whenever a
synchronization request completes and advances to the next offset. However
if an I/O request collides with one of the final g_mirror_syncreqs, nothing
releases it once synchronization completes, resulting in an apparent I/O
hang. The same problem can occur if synchronization is aborted by an
I/O error. Therefore, be sure to requeue pending requests when
mirror synchronization is stopped for any reason.
While here, remove some dead code from g_mirror_regular_release().
MFC after: 2 weeks
Sponsored by: Dell EMC Isilon
Introduce internal counter to track opens. Using provider's counters is
not very successfull after calling g_wither_provider().
MFC after: 2 weeks
Sponsored by: iXsystems, Inc.
When a syncid bump is pending, any write to the mirror results in the
updated syncid being written to each component's metadata block. However,
the update was only being performed after the writes to the mirror
componenents were queued. Instead, synchronously update the metadata block
first.
MFC after: 3 weeks
Sponsored by: Dell EMC Isilon
Consider a mirror with two components, m1 and m2. Suppose a hardware error
results in the removal of m2, with m1's genid bumped. Suppose further that
a replacement mirror component m3 is created and synchronized, after which
the system is shut down uncleanly. During a subsequent bootup, if gmirror
tastes m1 and m2 first, m2 will be removed from the mirror because it is
broken, but the mirror will be started without bumping the syncid on m1
because all elements of the mirror are accounted for. Then m3 will be
added to the already-running mirror with the same syncid as m1, so the
components will not be synchronized despite the unclean shutdown.
Handle this scenario by bumping the syncid of healthy components if any
broken mirrors are discovered during mirror startup.
MFC after: 3 weeks
Sponsored by: Dell EMC Isilon
The g_io_schedule_up() gets its "if" condition swapped to make
it more similar to g_io_schedule_down().
Suggested by: mav@
Reviewed by: mav@
MFC after: 1 month
Such errors can occur as the result of a write error or because the disk
backing the mirror element was removed. They result in a generation ID bump
on all active elements of the mirror, so we can safely disconnect the mirror
component rather than destroy it.
MFC after: 2 weeks
Sponsored by: EMC / Isilon Storage Division
Differential Revision: https://reviews.freebsd.org/D7750
These are useful for testing changes to I/O error handling, and for
reproducing existing bugs in a controlled manner. The fail points are
g_mirror_regular_request_read
g_mirror_regular_request_write
g_mirror_sync_request_read
g_mirror_sync_request_write
g_mirror_metadata_write
They all effectively allow one to inject an error value into the bio_error
field of a corresponding BIO request as it is being completed.
MFC after: 2 weeks
Sponsored by: EMC / Isilon Storage Division
report the size only after first opening. And due to the events are
asynchronous, some consumers can receive this event too late and
this confuses them. This partially restores previous behaviour, and
at the same time this should fix the problem, when already opened
provider loses resize event.
PR: 211028
MFC after: 3 weeks
when it is being opened. This should fix the possible loss of a resize
event when disk capacity changed.
PR: 211028
Reported by: Dexuan Cui <decui at microsoft dot com>
MFC after: 3 weeks
superblock, allowing provider to be bit bigger, i.e. have some
extra padding after the FS image. That in some cases might be
a side-effect of using CLOOP format which enforces certain block
size and trying to compress image that is not exactly the number
of those blocks in size. The UFS itself does not have any issues
mounting such padded file systems, so it's what GEOM_LABEL should
do.
Submitted by: @mizhka_gmail.com
Differential Revision: https://reviews.freebsd.org/D6208
necessary because CLOOP format lacks explicit EOF or length, so that
in the presence of padding or when the CLOOP is put onto a larger
partition upper level provider size may be larger. Bound amount
of extra data that we might touch to the max length of the compressed
block and detect zero-padding in the last cluster, which when
sector is all-zero might cause us to emit bogus I/O error after
decompression of that fails. To not make code any more complicated
that it needs to be deal with it in lazy-manner, i.e. when we
first access that specific cluster.
This change also fixes stupid mistake in the LZMA code, inherited
from geom_lzma, which does not share length of the output buffer
buffer with the decompression routine, so that in the presence
of corrupted or purposedly tailored data may easily cause heap
overflow and kernel memory corruption.
Beef up validation of the CLOOP TOC by checking that lengths of
all but the last compressed clusters match upper limit set by
the decompressor and improve some error diagnostic output while
I am here.
2.Add kern.geom.uzip.attach_to tunable to artifically limit
attaching uzip to certain devices in the dev tree only.
For example the following only makes us attaching to the
GPT labels:
kern.geom.uzip.attach_to="gpt/*"
3.Add kern.geom.uzip.noattach_to, which does opposite to the (2)
above, i.e. prevents geom_uzip from tasting / attaching to
providers matching some pattern. By default we don't attach
to our own kind, i.e. kern.geom.uzip.noattach_to="*.uzip".
It saves us quite some CPU cycles, esp on low-end embedded
systems.
Approved by: re (gjb)
Differential Revision: https://reviews.freebsd.org/D7013
The GEOM disk d_mtx is only acquired on disk creation and destruction.
It is a good candidate for replacement with a pool mutex. This eliminates
the mutex initialization and teardown and the mutex and name variables
themselves from struct disk.
sys/geom/geom_disk.h:
Take d_mtx and d_mtx_name out of struct disk.
sys/geom/geom_disk.c:
Use mtx_pool_lock() and mtx_pool_unlock() to guard the disk
initialization state instead of a dedicated mutex.
This allows removing the initialization and destruction of
d_mtx.
sys/sys/param.h:
Bump __FreeBSD_version to 1100119 for the change to struct disk.
Suggested by: jhb
Sponsored by: Spectra Logic
Approved by: re (gjb)
This will result in lock recursion and is more generally incorrect since
the completion handlers will just reinsert the BIOs into the queue we're
trying to drain.
Reviewed by: imp, ngie
Approved by: re (gjb)
MFC after: 3 weeks
Sponsored by: EMC / Isilon Storage Division
Differential Revision: https://reviews.freebsd.org/D6908
after the underlying device went away.
The problem was that callers who queue the GEOM resize provider
event didn't check to make sure that the provider had not been
withered. For the other equivalent case, g_new_provider_event(),
the code checks to see whether the provider has been withered
before queueing a g_new_provider_event() to the event thread.
In some cases, a resize provider event would come through after
the provider had been withered and all of the existing consumers
had been orphaned. When the resize event triggered a taste of
the provider, that would attach a new consumer to the now
withered provider. The wither washer (g_wither_washer() would
never be able to completely tear down the GEOM because of the
consumers that were hanging around.
The solution was to check the G_PF_WITHER provider flag before
queueing the g_resize_provider_event(), and add an assert to
g_resize_provider_event() to insure that it isn't called on a
withered provider.
sys/geom/geom_subr.c:
In g_resize_provider(), don't try to continue if the
G_PF_WITHER flag is set.
In g_resize_provider_event(), add an assert that the
G_PF_WITHER flag is not set.
In g_access(), if a provider has an error, print out the
name of the provider with the error.
Sponsored by: Spectra Logic
Approved by: re (marius)
MFC after: 3 days
device is gone.
The problem was that when disk_gone() is called, if the GEOM disk
creation process has not yet happened, the withering process
couldn't start.
We didn't record any state in the GEOM disk code, and so the d_gone()
callback to the da(4) driver never happened.
The solution is to track the state of the creation process, and
initiate the withering process from g_disk_create() if the disk is
being created.
This change does add fields to struct disk, and so I have bumped
DISK_VERSION.
geom_disk.c: Track where we are in the disk creation process,
and check to see whether our underlying disk has
gone away or not.
In disk_gone(), set a new d_goneflag variable that
g_disk_create() can check to see if it needs to
clean up the disk instance.
geom_disk.h: Add a mutex to struct disk (for internal use) disk
init level, and a gone flag.
Bump DISK_VERSION because the size of struct disk has
changed and fields have been added at the beginning.
Sponsored by: Spectra Logic
Approved by: re (marius)
otherwise the system will hang.
This is a temporarily least intrusive crutch to get certain panicing systems
dumping. The proper fix should question is g_mirror_destroy() should be called
on a panicing system at all.
Discussed with: mav
ZFS's configuration needs to be updated whenever the physical path for a
device changes, but not when a new device is introduced. This is because new
devices necessarily cause config updates, but only if they are actually
accepted into the pool.
sys/cddl/contrib/opensolaris/uts/common/fs/zfs/vdev_geom.c
Split vdev_geom_set_physpath out of vdev_geom_attrchanged. When
setting the vdev's physical path, only request a config update if
the physical path has changed. Don't request it when opening a
device for the first time, because the config sync will happen
anyway upstack.
sys/geom/geom_dev.c
Split g_dev_set_physpath and g_dev_set_media out of
g_dev_attrchanged
Submitted by: will, asomers
MFC after: 4 weeks
Sponsored by: Spectra Logic Corp
Differential Revision: https://reviews.freebsd.org/D6428
outlived their usefulness. This allows to remove drop/pickup Giant
wrappers around GEOM calls.
Discussed with: alfred, imp, phk
Sponsored by: The FreeBSD Foundation