a new page of radix trie nodes to complete a vm_radix_insert() operation
that was requested by vm_page_cache(). Specifically, vm_page_cache()
already held the free page queue lock when UMA tried to acquire it through
a call to vm_page_alloc(). This code path no longer exists, so there is no
longer any reason to allow recursion on the free page queue mutex.
Improve nearby comments.
Reviewed by: kib, markj
Tested by: pho
Sponsored by: Dell EMC Isilon
Differential Revision: https://reviews.freebsd.org/D8628
longer used. More precisely, they are always zero because the code that
decremented and incremented them no longer exists.
Bump __FreeBSD_version to mark this change.
Reviewed by: kib, markj
Sponsored by: Dell EMC Isilon
Differential Revision: https://reviews.freebsd.org/D8583
not remove user-space visible fields from vm_cnt or all of the references to
cached pages from comments. Those changes will come later.)
Reviewed by: kib, markj
Tested by: pho
Sponsored by: Dell EMC Isilon
Differential Revision: https://reviews.freebsd.org/D8497
pages, specificially, dirty pages that have passed once through the inactive
queue. A new, dedicated thread is responsible for both deciding when to
launder pages and actually laundering them. The new policy uses the
relative sizes of the inactive and laundry queues to determine whether to
launder pages at a given point in time. In general, this leads to more
intelligent swapping behavior, since the laundry thread will avoid pageouts
when the marginal benefit of doing so is low. Previously, without a
dedicated queue for dirty pages, the page daemon didn't have the information
to determine whether pageout provides any benefit to the system. Thus, the
previous policy often resulted in small but steadily increasing amounts of
swap usage when the system is under memory pressure, even when the inactive
queue consisted mostly of clean pages. This change addresses that issue,
and also paves the way for some future virtual memory system improvements by
removing the last source of object-cached clean pages, i.e., PG_CACHE pages.
The new laundry thread sleeps while waiting for a request from the page
daemon thread(s). A request is raised by setting the variable
vm_laundry_request and waking the laundry thread. We request launderings
for two reasons: to try and balance the inactive and laundry queue sizes
("background laundering"), and to quickly make up for a shortage of free
pages and clean inactive pages ("shortfall laundering"). When background
laundering is requested, the laundry thread computes the number of page
daemon wakeups that have taken place since the last laundering. If this
number is large enough relative to the ratio of the laundry and (global)
inactive queue sizes, we will launder vm_background_launder_target pages at
vm_background_launder_rate KB/s. Otherwise, the laundry thread goes back
to sleep without doing any work. When scanning the laundry queue during
background laundering, reactivated pages are counted towards the laundry
thread's target.
In contrast, shortfall laundering is requested when an inactive queue scan
fails to meet its target. In this case, the laundry thread attempts to
launder enough pages to meet v_free_target within 0.5s, which is the
inactive queue scan period.
A laundry request can be latched while another is currently being
serviced. In particular, a shortfall request will immediately preempt a
background laundering.
This change also redefines the meaning of vm_cnt.v_reactivated and removes
the functions vm_page_cache() and vm_page_try_to_cache(). The new meaning
of vm_cnt.v_reactivated now better reflects its name. It represents the
number of inactive or laundry pages that are returned to the active queue
on account of a reference.
In collaboration with: markj
Reviewed by: kib
Tested by: pho
Sponsored by: Dell EMC Isilon
Differential Revision: https://reviews.freebsd.org/D8302
Requests which cannot be satisfied by allocators at boot time often
have unrealizable parameters. Waiting for the pagedaemon' start would
hang the boot if done in the thread0 context and just never succeed if
executed from another thread. In fact, for very early stages, sleep
attempt panics with obscure diagnostic about the scheduler state, and
explicit panic in vm_wait() makes the investigation much shorter by
cut off the examination of the thread and scheduler.
Theoretically, some subsystem might grab a resource to exhaustion, and
free it later in the boot process. If this unlikely scenario does
appear for real, the way to diagnose the trouble can be revisited.
Reported by: emaste
Reviewed by: markj
Sponsored by: The FreeBSD Foundation
MFC after: 2 weeks
Differential revision: https://reviews.freebsd.org/D8421
Suppose that we have an exclusively busy page, and a thread which can
accept shared-busy page. In this case, typical code waiting for the
page xbusy state to pass is
again:
VM_OBJECT_WLOCK(object);
...
if (vm_page_xbusied(m)) {
vm_page_lock(m);
VM_OBJECT_WUNLOCK(object); <---1
vm_page_busy_sleep(p, "vmopax");
goto again;
}
Suppose that the xbusy state owner locked the object, unbusied the
page and unlocked the object after we are at the line [1], but before we
executed the load of the busy_lock word in vm_page_busy_sleep(). If it
happens that there is still no waiters recorded for the busy state,
the xbusy owner did not acquired the page lock, so it proceeded.
More, suppose that some other thread happen to share-busy the page
after xbusy state was relinquished but before the m->busy_lock is read
in vm_page_busy_sleep(). Again, that thread only needs vm_object lock
to proceed. Then, vm_page_busy_sleep() reads busy_lock value equal to
the VPB_SHARERS_WORD(1).
In this case, all tests in vm_page_busy_sleep(9) pass and we are going
to sleep, despite the page being share-busied.
Update check for m->busy_lock == VPB_UNBUSIED in vm_page_busy_sleep(9)
to also accept shared-busy state if we only wait for the xbusy state to
pass.
Merge sequential if()s with the same 'then' clause in
vm_page_busy_sleep().
Note that the current code does not share-busy pages from parallel
threads, the only way to have more that one sbusy owner is right now
is to recurse.
Reported and tested by: pho (previous version)
Reviewed by: alc, markj
Sponsored by: The FreeBSD Foundation
MFC after: 1 week
Differential revision: https://reviews.freebsd.org/D8196
waiters. Otherwise, owners of the shared-busy state are left blocked
and might get into a deadlock.
Note that the vm_page_busy_downgrade() function is not used in the
tree right now.
Reported and tested by: pho (previous version)
Reviewed by: alc, markj
Sponsored by: The FreeBSD Foundation
MFC after: 1 week
Differential revision: https://reviews.freebsd.org/D8195
by vm_pageout_scan() local to vm_pageout_worker(). There is no reason
to store the pass in the NUMA domain structure.
Reviewed by: kib
MFC after: 3 weeks
Idle page zeroing has been disabled by default on all architectures since
r170816 and has some bugs that make it seemingly unusable. Specifically,
the idle-priority pagezero thread exacerbates contention for the free page
lock, and yields the CPU without releasing it in non-preemptive kernels. The
pagezero thread also does not behave correctly when superpage reservations
are enabled: its target is a function of v_free_count, which includes
reserved-but-free pages, but it is only able to zero pages belonging to the
physical memory allocator.
Reviewed by: alc, imp, kib
Differential Revision: https://reviews.freebsd.org/D7714
The removal of vm_fault_additional_pages() meant that a hard fault on
a swap-backed page would result in only that page being read in. This
change implements readahead and readbehind for the swap pager in
swap_pager_getpages(). swap_pager_haspage() is modified to return the
largest contiguous non-resident range of pages containing the requested
range.
Reviewed by: alc, kib
Tested by: pho
MFC after: 1 month
Differential Revision: https://reviews.freebsd.org/D7677
of CPUs present. On amd64 this unbreaks the boot for systems with 92 or
more CPUs; the limit will vary on other systems depending on the size of
their uma_zone and uma_cache structures.
The major consumer of pages during UMA startup is the 19 zone structures
which are set up before UMA has bootstrapped itself sufficiently to use
the rest of the available memory: UMA Slabs, UMA Hash, 4 / 6 / 8 / 12 /
16 / 32 / 64 / 128 / 256 Bucket, vmem btag, VM OBJECT, RADIX NODE, MAP,
KMAP ENTRY, MAP ENTRY, VMSPACE, and fakepg. If the zone structures occupy
more than one page, they will not share pages and the number of pages
currently needed for startup is 19 * pages_per_zone + N, where N is the
number of pages used for allocating other structures; on amd64 N = 3 at
present (2 pages are allocated for UMA Kegs, and one page for UMA Hash).
This patch adds a new definition UMA_BOOT_PAGES_ZONES, currently set to 32,
and if a zone structure does not fit into a single page sets boot_pages to
UMA_BOOT_PAGES_ZONES * pages_per_zone instead of UMA_BOOT_PAGES (which
remains at 64). Consequently this patch has no effect on systems where the
zone structure fits into 2 or fewer pages (on amd64, 59 or fewer CPUs), but
increases boot_pages sufficiently on systems where the large number of CPUs
makes this structure larger. It seems safe to assume that systems with 60+
CPUs can afford to set aside an additional 128kB of memory per 32 CPUs.
The vm.boot_pages tunable continues to override this computation, but is
unlikely to be necessary in the future.
Tested on: EC2 x1.32xlarge
Relnotes: FreeBSD can now boot on 92+ CPU systems without requiring
vm.boot_pages to be manually adjusted.
Reviewed by: jeff, alc, adrian
Approved by: re (kib)
waiters exist, same as for vm_page_xunbusy(). If previous value of
busy_lock was VPB_SINGLE_EXCLUSIVER, no waiters existed and wakeup is
not needed.
Move common code from vm_page_xunbusy_maybelocked() and
vm_page_xunbusy_hard() to vm_page_xunbusy_locked().
Reviewed by: alc
Sponsored by: The FreeBSD Foundation
MFC after: 2 weeks
Approved by: re (gjb)
Per the KASSERT at the beginning of the function, we expect that the page
does not belong to any object, so its object and pindex fields are
meaningless. Reset them in the rare case that vm_radix_insert() fails.
Reviewed by: kib
MFC after: 1 week
Differential Revision: https://reviews.freebsd.org/D6669
acquire the page lock, which recurses. Avoid the recursion by reusing
the code from vm_page_remove() in a new helper
vm_page_xunbusy_maybelocked().
Reviewed by: alc
Sponsored by: The FreeBSD Foundation
indicate that threads are waiting for free pages to become available and
(2) to indicate whether a wakeup call has been sent to the page daemon.
The trouble is that a single flag cannot really serve both purposes, because
we have two distinct targets for when to wakeup threads waiting for free
pages versus when the page daemon has completed its work. In particular,
the flag will be cleared by vm_page_free() before the page daemon has met
its target, and this can lead to the OOM killer being invoked prematurely.
To address this problem, a new flag "vm_pageout_wanted" is introduced.
Discussed with: jeff
Reviewed by: kib, markj
Tested by: markj
Sponsored by: EMC / Isilon Storage Division
for empty page cache when the object type if OBJT_VNODE.
Reported and tested by: pho
Reviewed by: alc
Sponsored by: The FreeBSD Foundation
MFC after: 1 week
freed page as VPO_UNMANAGED. Otherwise vm_pge_free_toq() insists on
owning the page lock.
Previously, VPO_UNMANAGED was only set up to the last processed page.
Reviewed by: alc
Sponsored by: The FreeBSD Foundation
MFC after: 1 week
pq_vcnt, as a count of real things, has no business being negative. It is only
ever initialized by a u_int counter.
The warning came from the atomic_add_int() in vm_pagequeue_cnt_add().
Rectify the warning by changing the variable to u_int. No functional change.
Suggested by: Clang 3.3
Sponsored by: EMC / Isilon Storage Division
rounddown2 tends to produce longer lines than the original code
and when the code has a high indentation level it was not really
advantageous to do the replacement.
This tries to strike a balance between readability using the macros
and flexibility of having the expressions, so not everything is
converted.
address and use this mechanism when:
1. kmem_alloc_{attr,contig}() can't find suitable free pages in the physical
memory allocator's free page lists. This replaces the long-standing
approach of scanning the inactive and inactive queues, converting clean
pages into PG_CACHED pages and laundering dirty pages. In contrast, the
new mechanism does not use PG_CACHED pages nor does it trigger a large
number of I/O operations.
2. on 32-bit MIPS processors, uma_small_alloc() and the pmap can't find
free pages in the physical memory allocator's free page lists that are
covered by the direct map. Tested by: adrian
3. ttm_bo_global_init() and ttm_vm_page_alloc_dma32() can't find suitable
free pages in the physical memory allocator's free page lists.
In the coming months, I expect that this new mechanism will be applied in
other places. For example, balloon drivers should use relocation to
minimize fragmentation of the guest physical address space.
Make vm_phys_alloc_contig() a little smarter (and more efficient in some
cases). Specifically, use vm_phys_segs[] earlier to avoid scanning free
page lists that can't possibly contain suitable pages.
Reviewed by: kib, markj
Glanced at: jhb
Discussed with: jeff
Sponsored by: EMC / Isilon Storage Division
Differential Revision: https://reviews.freebsd.org/D4444
o With new KPI consumers can request contiguous ranges of pages, and
unlike before, all pages will be kept busied on return, like it was
done before with the 'reqpage' only. Now the reqpage goes away. With
new interface it is easier to implement code protected from race
conditions.
Such arrayed requests for now should be preceeded by a call to
vm_pager_haspage() to make sure that request is possible. This
could be improved later, making vm_pager_haspage() obsolete.
Strenghtening the promises on the business of the array of pages
allows us to remove such hacks as swp_pager_free_nrpage() and
vm_pager_free_nonreq().
o New KPI accepts two integer pointers that may optionally point at
values for read ahead and read behind, that a pager may do, if it
can. These pages are completely owned by pager, and not controlled
by the caller.
This shifts the UFS-specific readahead logic from vm_fault.c, which
should be file system agnostic, into vnode_pager.c. It also removes
one VOP_BMAP() request per hard fault.
Discussed with: kib, alc, jeff, scottl
Sponsored by: Nginx, Inc.
Sponsored by: Netflix
Remove redundant lookup of the old page from vm_page_replace. Verification
that the old page exists is already done by vm_radix_replace.
Submitted by: Ryan Libby <rlibby@gmail.com>
Reviewed by: alc, kib
Sponsored by: EMC / Isilon Storage Division
Follow-up to: https://reviews.freebsd.org/D4326
Differential Revision: https://reviews.freebsd.org/D4471
reclaimed in FIFO order by the pagedaemon. Previously we would enqueue
such pages at the head of the inactive queue, yielding a LIFO reclaim order.
Reviewed by: alc
MFC after: 2 weeks
Sponsored by: EMC / Isilon Storage Division
of POSIX_FADV_DONTNEED so that it causes the backing pages to be moved to
the head of the inactive queue instead of being cached.
This affects the implementation of POSIX_FADV_NOREUSE as well, since it
works by applying POSIX_FADV_DONTNEED to file ranges after they have been
read or written. At that point the corresponding buffers may still be
dirty, so the previous implementation would coalesce successive ranges and
apply POSIX_FADV_DONTNEED to the result, ensuring that pages backing the
dirty buffers would eventually be cached. To preserve this behaviour in an
efficient manner, this change adds a new buf flag, B_NOREUSE, which causes
the pages backing a VMIO buf to be placed at the head of the inactive queue
when the buf is released. POSIX_FADV_NOREUSE then works by setting this
flag in bufs that underlie the specified range.
Reviewed by: alc, kib
Sponsored by: EMC / Isilon Storage Division
Differential Revision: https://reviews.freebsd.org/D3726
queue and (2) returns a Boolean indicating whether the page's wire count
transitioned to zero.
Exploit this change in vfs_vmio_release() to avoid pointlessly enqueueing
a page that is about to be freed.
(An earlier version of this change was developed by attilio@ and kmacy@.
Any errors in this version are my own.)
Reviewed by: kib
Sponsored by: EMC / Isilon Storage Division
with a reference count of zero can't possibly be mapped, so there is never a
need for vm_page_set_invalid() to call pmap_remove_all() on them.
Reviewed by: kib
MFC after: 1 week
Sponsored by: EMC / Isilon Storage Division
This was added in r51337 as part of the implementation of
madvise(MADV_DONTNEED). Its objective was to ensure that the page daemon
would eventually reclaim other unreferenced pages (i.e., unreferenced pages
not touched by madvise()) from the active queue.
Now that the pagedaemon performs steady scanning of the active page queue,
this weighted handling is unnecessary. Instead, always "cache" clean pages
by moving them to the head of the inactive page queue. This simplifies the
implementation of vm_page_advise() and eliminates the fragmentation that
resulted from the distribution of pages among multiple queues.
Suggested by: alc
Reviewed by: alc
Sponsored by: EMC / Isilon Storage Division
Differential Revision: https://reviews.freebsd.org/D3401
r283162.
Fix a cosmetic issue with vm_page_alloc() calling vm_page_free_toq()
with the page not completely satisfying vm_page_free() assertions.
The page is not owned by the object, since insertion failed. But
besides m->object reset to NULL, we should also set VPO_UNMANAGED flag
for consistency.
Reported by: pho
Reviewed by: alc
Sponsored by: The FreeBSD Foundation
MFC after: 1 week
remains. Xen is planning to phase out support for PV upstream since it
is harder to maintain and has more overhead. Modern x86 CPUs include
virtualization extensions that support HVM guests instead of PV guests.
In addition, the PV code was i386 only and not as well maintained recently
as the HVM code.
- Remove the i386-only NATIVE option that was used to disable certain
components for PV kernels. These components are now standard as they
are on amd64.
- Remove !XENHVM bits from PV drivers.
- Remove various shims required for XEN (e.g. PT_UPDATES_FLUSH, LOAD_CR3,
etc.)
- Remove duplicate copy of <xen/features.h>.
- Remove unused, i386-only xenstored.h.
Differential Revision: https://reviews.freebsd.org/D2362
Reviewed by: royger
Tested by: royger (i386/amd64 HVM domU and amd64 PVH dom0)
Relnotes: yes
a text file with a list of physical memory addresses to exclude, and have it
loaded at boot time via the provided example in loader.conf. The tunable
'vm.blacklist' remains, but using an external file means that there's no
practical limit to the size of the list. This change also improves the
scanning algorithm for processing the list, scanning the list only once
instead of scanning it for every page in the system. Both the sysctl and
the file can be unsorted and contain duplicates so long as each entry is
numeric (decimal or hex) and is separated by a space, comma, or newline
character. The sysctl 'vm.page_blacklist' is now provided to report what
memory locations were successfully excluded.
Reviewed by: imp, emax
Obtained from: Netflix, Inc.
MFC after: 3 days
vm.boot_pages is marked as a CTLFLAG_RDTUN, but it's used by the VM
before the sysctl subsystem is initialsed. We manually fetch the
variable from the environment to work around this problem.
Tested by: Keith White kwhite at uottawa.ca
MFC after: 1 week
on i386 PAE. Previously, VM_PHYSSEG_SPARSE could not be used on amd64 and
i386 because vm_page_startup() would not create vm_page structures for the
kernel page table pages allocated during pmap_bootstrap() but those vm_page
structures are needed when the kernel attempts to promote the corresponding
kernel virtual addresses to superpage mappings. To address this problem, a
new public function, vm_phys_add_seg(), is introduced and vm_phys_init() is
updated to reflect the creation of vm_phys_seg structures by calls to
vm_phys_add_seg().
Discussed with: Svatopluk Kraus
MFC after: 3 weeks
Sponsored by: EMC / Isilon Storage Division