- getnetgrent.c: address some NIS compatibility problems. We really need
to use the netgroup.byuser and netgroup.byhost maps to speed up innetgr()
when using NIS. Also, change the NIS interaction in the following way:
If /etc/netgroup does not exist or is empty (or contains only the
NIS '+' token), we now use NIS exclusively. This lets us use the
'reverse netgroup' maps and is more or less the behavior of other
platforms.
If /etc/netgroup exists and contains local netgroup data (but no '+').
we use only lthe local stuff and ignore NIS.
If /etc/netgroup exists and contains both local data and the '+',
we use the local data nd the netgroup map as a single combined
database (which, unfortunately, can be slow when the netgroup
database is large). This is what we have been doing up until now.
Head off a potential NULL pointer dereference in the old innetgr()
matching code.
Also fix the way the NIS netgroup map is incorporated into things:
adding the '+' is supposed to make it seem as though the netgroup
database is 'inserted' wherever the '+' is placed. We didn't quite
do it that way before.
(The NetBSD people apparently use a real, honest-to-gosh, netgroup.db
database that works just like the password database. This is
actually a neat idea since netgroups is the sort of thing that
can really benefit from having multi-key search capability,
particularly since reverse lookups require more than a trivial
amount of processing. Should we do something like this too?)
- netgroup.5: document all this stuff.
- rcmd.c: some sleuthing with some test programs linked with my own
version of innetgr() has revealed that SunOS always passes the NIS
domain name to innetgr() in the 'domain' argument. We might as well
do the same (if YP is defined).
- ether_addr.c: also fix the NIS interaction so that placing the
'+' token in the /etc/ethers file makes it seem like the NIS
ethers data is 'inserted' at that point. (Chances are nobody will
notice the effect of this change, which is just te way I like it. :)
_gr_breakout_yp(): if we encounter a NULL pointer generated as the
result of a badly formatted NIS passwd entry (e.g. missing fields),
we punt and return an error code, thereby silently skipping the
bad entry.
last night:
_gr_breakout_yp() doesn't check for badly formatted NIS group entries.
For example, a bogus entry like this:
bootp::user1,user2,user3
will lead to a null pointer dereference and a SEGV (note that the GID
field is missing -- this results in one of the strsep(&result, ":")
returning NULL). The symtpom of this problem is programs dumping
core left and right the moment you add a + entry to /etc/group.
Note that while this is similar to an earlier bug, it's caused by a
different set of circumstances.
The fix is to check for the NULL pointers and have _gr_breakout_yp()
punt and return a failure code if it catches one. This is more or
less the behavior of SunOS: if a bad NIS group entry is encountered,
it's silently ignored. I don't think our standard (non-NIS) group
parsing code behaves the same way. It doesn't crash though, so I'm
citing the 'it ain't broken, don't fix it' rule and leaving it alone.
I'll probably have to add similar checks to _pw_breakout_yp() in
getpwent.c to ward off the same problems. It's rare that bad NIS
map entries like this occur, but we should handle them gracefully
when they do.
'cycle in netgroup check too greedy').
PR #508 is apparently due to an inconsistency in the way the 4.4BSD
netgroup code deals with bad netgroups. When 4.4BSD code encounters
a badly formed netgroup entry (e.g. (somehost,-somedomain), which,
because of the missing comma between the '-' and 'somedomain,' has
only 2 fields instead of 3), it generates an error message and
then bails out without doing any more processing on the netgroup
containing the bad entry. Conversely, every other *NIX in the world
that usees netgroups just tries to parse the entry as best it can
and then silently continues on its way.
The result is that two bad things happen: 1) we ignore other valid entries
within the netgroup containing the bogus entry, which prevents
us from interoperating with other systems that don't behave this way,
and 2) by printing an error to stderr from inside libc, we hose certain
programs, in this case rlogind. In the problem report, Bill Fenner
noted that the 'B' from 'Bad' was missing, and that rlogind exited
immediately after generating the error. The missing 'B' is apparently
not caused by any problem in getnetgrent.c; more likely it's getting
swallowed up by rlogind somehow, and the error message itself causes
rlogind to become confused. I was able to duplicate this problem and
discovered that running a simple test program on my FreeBSD system
resulted in a properly formatted (if confusing) error, whereas triggering
the error by trying to rlogin to the machine yielded the missing 'B'
problem.
Anyway, the fixes for this are as follows:
- The error message has been reformatted so that it prints out more useful
information (e.g. Bad entry (somehost,-somedomain) in netgroup "foo").
We check for NULL entries so that we don't print '(null)' anymore too. :)
- Rearranged things in parse_netgrp() so that we make a best guess at
what bad entries are supposed to look like and then continue processing
instead of bailing out.
- Even though the error message has been cleaned up, it's wrapped inside
a #ifdef DEBUG. This way we match the behavior of other systems. Since we
now handle the error condition better anyway, this error message becomes
less important.
PR #507 is another case of inconsistency. The code that handles
duplicate/circular netgroup entries isn't really 'too greedy; -- it's
just too noisy. If you have a netgroup containing duplicate entries,
the code actually does the right thing, but it also generates an error
message. As with the 'Bad netgroup' message, spewing this out from
inside libc can also hose certain programs (like rlogind). Again, no
other system generates an error message in this case.
The only change here is to hide the error message inside an #ifdef DEBUG.
Like the other message, it's largely superfluous since the code handles
the condition correctly.
Note that PR #510 (+@netgroup host matching in /etc/hosts.equiv) is still
being investigated. I haven't been able to duplicate it myself, and I
strongly suspect it to be a configuration problem of some kind. However,
I'm leaving all three PRs open until I get 510 resolved just for the
sake of paranoia.
- If you take the wheel entry out of /etc/group and turn on NIS,
the '+:*::' line is incorrectly flagged as the entry for wheel (the
empty gid section is translated to 0), hence getgrgid() returns '+'
as the name of the group instead of 'wheel.'
- Using just '+:' as the 'turn on NIS' switch in /etc/group makes
getgrgid() dump core because of a null pointer dereference. (Last
time I was in here, I foolishly assumed that fixing the core dump
problems with getgrnam() and getgrent() would fix getgrgid() too.
Silly me.)
- it succeeded on non-directories (see POSIX 5.1.2.4).
- it hung on (non-open) named pipes.
- it leaked memory if the second malloc() failed.
- it didn't preserve errno across errors in close().
of the plus or minus lists at all, reject him. This lets you create
a +@netgroup list of users that you want to admit and reject everybody
else. If you end your +@netgroup list with the wildcard line
(+:::::::::) then you'll have a +@netgroup list that remaps the
specified people but leaves people not in any netgroup unaffected.
add #includes for YP headers when compiling with -DYP to avoid some implicit
declarations.
getgrent.c & getnetgrent.c: add some #includes to avoid implicit declarations
of YP functions.
remapping mechanism in the following manner: if given an entry +@foo
and there is no netgroup named 'foo,' try searching for a regular
user group called 'foo' and build the cache using the members of
group 'foo' instead. If both a netgroup 'foo' and a user group 'foo'
exist, the 'foo' netgroup takes precedence, since we're primarily
interested in netgroup matching anyway.
This allows access control schemes based on ordinary user groups
(which are also available via NIS) rather than netgroups, since
netgroups on some systems are limited in really brain-damaged ways.
my network because setnetgrent() was trying to do a lookup on group "".
It seems that an attempt to do a yp_match() (and possible yp_next())
on a null or empty key causes Sun's ypserv in SunOS 4.1.3 to exit
suddenly (and without warning). Our ypserv behaves badly in this
situation too, thoush it doesn't appear to crash. In any event, getpwent,
getnetgrent and yp_match() and yp_next() are now extra careful not to
accidentally pass on null or empty arguments.
Also made a small change to getpwent.c to allow +::::::::: wildcarding,
which I had disabled previously.
- Have the +@netgroup/-@netgroup caches handle the +user/-user cases too.
- Clean up getpwent() to take advantage of the improved +user/-user handling.
work because parse_netgrp() doesn't recurse properly. Fixed by
changing
if (parse_netgrp(spos))
return(1);
to
if (parse_netgrp(spos))
continue;
inside parse_netgrp(). (Lucky for me I happen to have a fairly complex
'live' netgroup database to test this stuff with.)
- Added support for reading netgroups from NIS/YP in addition to the
local /etc/netgroups file. (Note that SunOS and many other systems only
support reading netgroups via NIS, which is a bit odd.)
- Fix Evil Null Pointer Dereferences From Hell (tm) that caused
parse_netgrp() to SEGV when expanding netgroups that include
references to other netgroups. Funny how nobody else noticed this.
This is the first step in implimenting +@netgroup substitution in
getpwent.c and any other places that could use it and don't already
support it (which is probably everywhere).
by heading off possible null pointer dereferences in grscan(). Also
change getgrnam() slightly to properly handle the change: if grscan()
returns an rval of 1 and leaves a '+' in the gr_name field and YP is
enabled, poll the YP group.byname map before giving up. This should
insure that we make every effort to find a match in the local and
YP group databases before bailing out.
in an (unlikely) border case (maxgroups==1 and the user is on
an /etc/group line for the same group and that group only ...).
Now this case is dealt with as before ...
Add a missing apostrophe that suggests inverting the frequency to get
tick size. It read better before because `CLK_TCK' suggests a tick
size although it is actually a frequency.
as an NIS client. The pw_breakout_yp routines that are used to populate the
_pw_passwd structire only do anything if the bits in the pw_fields member
_pw_passwd are cleared. Unfortunately, we can get into a state where
pw_fields has garbage in it right before the YP lookup functions are
called, which causes the breakout functions to screw up in a big way.
Here's how to duplicate the problem:
- Configure FreeBSD as an NIS client
- Log in as a user who's password database records reside only in
the NIS passwd maps.
- Type ps -aux
Result: your processes appear to be owned by 'root' or 'deamon.'
/bin/ls can exhibit the same problem.
The reason this happens:
- When ps(1) needs to match a username to a UID, it calls getpwuid().
- root is in the local password file, so getpwuid() calls __hashpw()
and __hashpw() populates the _pw_passwd struct, including the pw_fields
member. This happens before NIS lookups take place because, by coincidence,
ps(1) tends to display processes owned by root before it happens upon
a proccess owned by you.
- When your UID comes up, __hashpw() fails to find your entry in the
local password database, so it bails out, BUT THE BITS IN THE pw_fields
STRUCTURE OF _pw_passwd ARE NEVER CLEARED AND STILL CONTAIN INFORMATION
FROM THE PREVIOUS CALL TO __hash_pw()!!
- If we have NIS enabled, the NIS lookup functions are called.
- The pw_breakout_yp routines see that the pw_fields bits are set and
decline to place the data retrieved from the NIS passwd maps into the
_pw_passwd structure.
- getpwuid() returns the results of the last __hashpw() lookup instead
of the valid NIS data.
- Hijinxs ensue when user_from_uid() caches this bogus information and
starts handing out the wrong usernames.
AAAARRRRRRRRRGGGGGGHHHHHHHHHH!!!
*Please* don't tell me I'm the only person to have noticed this.
Fixed by having __hashpw() check the state of pw_fields just before
bailing out on a failed lookup and clearing away any leftover garbage.
What a fun way to spend an afternoon.
- FreeBSD's NIS server can supply a master.passwd map, which has
more fields in it than a standard passwd map, so we need a
_master_pw_breakout() fuction.
- When doing passwd map lookups, look for master.passwd.* by attempting
a _yp_first() on master.passwd.byname. If it exists, we're being served
by a FreeBSD NIS server and we should use this map.
- If we aren't the superuser, retrieve only the standard passwd maps.
If we're being served by a FreeBSD system, then the passwd map has
no passwords in it, and it won't serve us the master.passwd map unless
we're superuser anyway.
There's a small speed hit for the superuser inherent in the check for
the master.passwd map, but this lets us dynamically decide what to do
rather than rely on a non-standard config file somewhere. Since all
of this is bypassed for normal users, they shouldn't notice the
difference.
YP by disallowing `+' entries as logins in all cases. (This handles the
case of a `+' entry in the password file but YP not running, which should
never happen but is easy enough to check for so we'll apply some
prophylaxis.)
getcwd() has two off-by-one bugs in FreeBSD-2.0:
1. getcwd(buf, size) fails when the size is just large enough.
2. getcwd(buf + 1, 1) incorrectly succeeds when the current directory
is "/". buf[0] and buf[2] are clobbered.
(I modified Bruce's original patch to return the proper error code
[ERANGE] in the case of #2, but otherwise... -DG)
This program demonstrates the bug:
---
#include <stdlib.h>
#include <string.h>
#include <stdio.h>
#include <unistd.h>
int main(void)
{
char buf[5];
int errors;
errors = 0;
if (chdir("/tmp") != 0) {
perror("chdir");
abort();
}
if (getcwd(buf, 5) == NULL) {
perror("oops, getcwd failed for buffer size = size required");
++errors;
}
if (chdir("/") != 0) {
perror("chdir");
abort();
}
buf[0] = 0;
buf[2] = 1;
if (getcwd(buf + 1, 1) != NULL) {
fprintf(stderr,
"oops, getcwd succeeded for buffer size = one too small\n");
++errors;
}
if (buf[0] != 0) {
fprintf(stderr,
"oops, getcwd scribbled on memory before start of buffer\n");
++errors;
}
if (buf[2] != 1) {
fprintf(stderr,
"oops, getcwd scribbled on memory after end of buffer\n");
++errors;
}
exit(errors == 0 ? 0 : 1);
}
pointer returned by realloc(). All callers free the pointer if the
execve fails. Nuke the caching. This essentially restores buildargv()
to the 1.1.5 version. Also fix a memory leak if realloc() fails. Also
nuke similar but non-broken caching in execvp(). malloc() should be
efficient enough.
later be applied to a number of programs (inetd for instance) to clean
out the bogus code doing the same thing, modulus all the bugs.
If you need to read a '#'-is-a-comment-file, please use these routines.
I realize that the shlib# should be bumped (for the non-US world:
increased by something), but will defer this until something significant
happens.
!!!!!!!!
NB
!!!!!!!!
You MUST pwd_mkdb /etc/master.passwd before attempting to use the new
libc, or things may go wrong. (I doubt anything actually /will/ go
wrong, but the actual behavior is undefined. YOU HAVE BEEN WARNED.)
The database format is, however, backwards-compatible, so old executables
will still work.
are running under. Here's how to bootstrap (order is important):
1) Re-compile gcc (just the driver is all you need).
2) Re-compile libc.
3) Re-compile your kernel. Reboot.
4) cd /usr/src/include; make install
You can now detect the compilation environment with the following code:
#if !defined(__FreeBSD__)
#define __FreeBSD_version 199401
#elif __FreeBSD__ == 1
#define __FreeBSD_version 199405
#else
#include <osreldate.h>
#endif
You can determine the run-time environment by calling the new C library
function getosreldate(), or by examining the MIB variable kern.osreldate.
For the time being, the release date is defined as 199409, which we have
already established as our target.