chunks. This allows runs to be any multiple of the page size. The
primary advantage is that large objects are no longer constrained to be
2^n pages, which can dramatically decrease internal fragmentation for
large objects. This also allows the sizes for runs that back small
objects to be more finely tuned.
Free runs are searched for linearly using the chunk page map (with the
help of some heuristic optimizations). This changes the allocation
policy from "first best fit" to "first fit". A prototype red-black tree
implementation for tracking free runs that implemented "first best fit"
did not cause a measurable speed or memory usage difference for
realistic chunk sizes (though of course it is possible to construct
benchmarks that favor one allocation policy over another).
Refine the handling of fullness constraints for small runs to be more
tunable.
Restructure the per chunk page map to contain only two fields per entry,
rather than four. Also, increase each entry from 4 to 8 bytes, since it
allows for 32-bit integers, without increasing the number of chunk
header pages.
Relax the maximum chunk size constraint. This is of no practical
interest; it is merely fallout from the chunk page map restructuring.
Revamp statistics gathering and reporting to be faster, clearer and more
informative. Statistics gathering is fast enough now to have little
to no impact on application speed, but it still requires approximately
two extra pages of memory per arena (per process). This memory overhead
may be acceptable for most systems, but we still need to leave
statistics gathering disabled by default in RELENG branches.
Rename NO_MALLOC_EXTRAS to MALLOC_PRODUCTION in order to make its intent
clearer (i.e. it should be defined in RELENG branches).
avoid substantial potential bloat for static binaries that do not
otherwise use any printf(3)-family functions. [1]
Rearrange arena_run_t so that the region bitmask can be minimally sized
according to constraints related to each bin's size class. Previously,
the region bitmask was the same size for all run headers, which wasted
a measurable amount of memory.
Rather than making runs for small objects as large as possible, make
runs as small as possible such that header overhead stays below a
certain bound. There are two exceptions that override the header
overhead bound:
1) If the bound is impossible to honor, it is relaxed on a
per-size-class basis. Since there is one bit of header
overhead per object (plus a constant), it is impossible to
achieve a header overhead less than or equal to 1/(# of bits
per object). For the current setting of maximum 0.5% header
overhead, this relaxation comes into play for {2, 4, 8,
16}-byte objects, for which header overhead is (on 64-bit
systems) {7.1, 4.3, 2.2, 1.2}%, respectively.
2) There is still a cap on small run size, still set to 64kB.
This comes into play for {1024, 2048}-byte objects, for which
header overhead is {1.6, 3.1}%, respectively.
In practice, this reduces the run sizes, which makes worst case
low-water memory usage due to fragmentation less bad. It also reduces
worst case high-water run fragmentation due to non-full runs, but this
is only a constant improvement (most important to small short-lived
processes).
Reduce the default chunk size from 2MB to 1MB. Benchmarks indicate that
the external fragmentation reduction makes 1MB the new sweet spot (as
small as possible without adversely affecting performance).
Reported by: [1] kientzle
This has no impact unless USE_BRK is defined (32-bit platforms), in
which case user allocations are allocated via mmap() if at all possible,
in order to avoid the possibility of unreclaimable chunks in the data
segment.
Fix an obscure bug in base_alloc() that could have allowed undefined
behavior if an application were to use sbrk() in conjunction with a
USE_BRK-enabled malloc.
chunk per arena, rather than immediately deallocating all unused chunks.
This fixes a potential performance issue when allocating/deallocating
an object of size (4kB..1MB] in a loop.
Reported by: davidxu
don't be greedy on the GNU "::" extension when arg separated by whitespace
and POSIX_CORRECTLY is set. From POSIX point of view this is unclear
situation, so minimal assumption looks right.
(size_t)(num * size) == 0
but both num and size are nonzero.
Reported by: Ilja van Sprundel
Approved by: jasone
Security: Integer overflow; calloc was allocating 1 byte in
response to a request for a multiple of 2^32 (or 2^64)
bytes instead of returning NULL.
well as avoiding a switch statement. This change has no significant impact
to performance when branch prediction is successful at predicting the sizes
of objects passed to free(), but in the case that the object sizes are
semi-random, this change has the potential to prevent many branch prediction
misses, thus improving performance substantially.
Take advantage of alignment guarantees in ipalloc(), and pad object sizes to
something less than a power of two when possible. This has the potential
to substantially reduce internal fragmentation for objects allocated via
posix_memalign().
Avoid an unnecessary pow2_ceil() call in arena_ralloc().
Submitted by: djam8193ah@hotmail.com
and instead creating a small allocation for each malloc(0) call. The
optional SysV compatibility behavior remains unchanged.
Add a couple of assertions.
Fix a couple of typos in error message strings.
The text is correct in the "DESCRIPTION" section, so fix "SYNOPSIS"
to use the correct name.
PR: docs/90498
Submitted by: Vasil Dimov
MFC after: 3 days
4kB pages), in order to avoid dangerous rounding error when calculating
fullness limits during run promotion/demotion.
Convert a structure bitfield to a normal field in areana_run_t. This should
have been changed along with the other fields in revision 1.120.
bounds. [1]
Modify logic for utilizing the data segment, such that it is possible to
create huge allocations there.
Shrink the data segment when deallocating a chunk, if it is at the end of
the data segment.
Rename chunk_size to csize in huge_malloc(), in order to avoid masking a
static variable of the same name. [1]
Reported by: Paul Allen <nospam@ugcs.caltech.edu>
races. This isn't currently necessary for libpthread or libthr, but
without it external threads libraries like the linuxthreads port are
not safe to use.
Reported by: ganbold@micom.mng.net
have to be calculated once per allocator operation.
Make nil const.
Update various comments.
Remove/avoid division where possible.
For the one division operation that remains in the critical path, add a
switch statement that has a case for each small size class, and do division
with a constant divisor in each case. This allows the compiler to generate
optimized code that does not use hardware division [1].
Obtained from: peter [1]
* Avoid choosing an arena until it's certain that an arena is needed
for allocation.
* Convert division/multiplication to bitshifting where possible.
* Avoid accessing TLS variables in single-threaded code.
* Reduce the amount of pointer dereferencing.
* Move lock acquisition in critical paths to only protect the the code
that requires synchronization, and completely remove locking where
possible.
determine its value at run time according to other relevant values. This
avoids the creation of runs that are incompletely utilized, as long as
pagesize isn't too large (>32kB, given the current RUN_MIN_REGS_2POW
setting).
Increase the size of several structure bitfields in arena_run_t in order
to avoid integer overflow in the case that a run's header does not overlap
with the space that is usable as application allocation regions. Given
the tiny_min_2pow change, this fix has no additional impact unless
pagesize is >32kB.
Reported by: kris
internally used chunk to start at the beginning of the heap, rather
than at a chunk-aligned address. This reduces mapped memory somewhat
for 32-bit architectures.
Add the arena_run_link_t type and use it wherever a run object is only
used as a ring 'header'. This saves approximately 40 kB of memory per
arena.
Remove an obsolete (no longer used) code path from base_alloc(), which
supported the internal allocation of objects larger than the chunk
size.
Enhance chunk_dealloc() to cache chunk addresses for all deallocated
chunks. This has no impact for most programs, but has the potential
to reduce VM map fragmentation for programs that use huge
allocations.
that no linear searching is necessary if we resort to allocating from a
run that is known to be mostly full. There are pathological edge cases
that could have caused severely degraded performance, and this change
fixes that.
close enough to each other that reallocation would allocate a new region
of the same size. This improves the performance of repeated incremental
reallocations by up to three orders of magnitude. [1]
Fix arena_new() to properly constrain run size if a small chunk size was
specified during runtime configuration.
Suggested by: se [1]
allocation patterns that involve a relatively even mixture of many
different size classes.
Reduce the chunk size from 16 MB to 2 MB. Since chunks are now carved up
using an address-ordered first best fit policy, VM map fragmentation is
much less likely, which makes smaller chunks not as much of a risk. This
reduces the virtual memory size of most applications.
Remove redzones, since program buffer overruns are no longer as likely to
corrupt malloc data structures.
Remove the C MALLOC_OPTIONS flag, and add H and S.