Vnet modules and protocol domains may now register destructor
functions to clean up and release per-module state. The destructor
mechanisms can be triggered by invoking "vimage -d", or a future
equivalent command which will be provided via the new jail framework.
While this patch introduces numerous placeholder destructor functions,
many of those are currently incomplete, thus leaking memory or (even
worse) failing to stop all running timers. Many of such issues are
already known and will be incrementaly fixed over the next weeks in
smaller incremental commits.
Apart from introducing new fields in structs ifnet, domain, protosw
and vnet_net, which requires the kernel and modules to be rebuilt, this
change should have no impact on nooptions VIMAGE builds, since vnet
destructors can only be called in VIMAGE kernels. Moreover,
destructor functions should be in general compiled in only in
options VIMAGE builds, except for kernel modules which can be safely
kldunloaded at run time.
Bump __FreeBSD_version to 800097.
Reviewed by: bz, julian
Approved by: rwatson, kib (re), julian (mentor)
active network stack instance. Turning on options VIMAGE at compile
time yields the following changes relative to default kernel build:
1) V_ accessor macros for virtualized variables resolve to structure
fields via base pointers, instead of being resolved as fields in global
structs or plain global variables. As an example, V_ifnet becomes:
options VIMAGE: ((struct vnet_net *) vnet_net)->_ifnet
default build: vnet_net_0._ifnet
options VIMAGE_GLOBALS: ifnet
2) INIT_VNET_* macros will declare and set up base pointers to be used
by V_ accessor macros, instead of resolving to whitespace:
INIT_VNET_NET(ifp->if_vnet); becomes
struct vnet_net *vnet_net = (ifp->if_vnet)->mod_data[VNET_MOD_NET];
3) Memory for vnet modules registered via vnet_mod_register() is now
allocated at run time in sys/kern/kern_vimage.c, instead of per vnet
module structs being declared as globals. If required, vnet modules
can now request the framework to provide them with allocated bzeroed
memory by filling in the vmi_size field in their vmi_modinfo structures.
4) structs socket, ifnet, inpcbinfo, tcpcb and syncache_head are
extended to hold a pointer to the parent vnet. options VIMAGE builds
will fill in those fields as required.
5) curvnet is introduced as a new global variable in options VIMAGE
builds, always pointing to the default and only struct vnet.
6) struct sysctl_oid has been extended with additional two fields to
store major and minor virtualization module identifiers, oid_v_subs and
oid_v_mod. SYSCTL_V_* family of macros will fill in those fields
accordingly, and store the offset in the appropriate vnet container
struct in oid_arg1.
In sysctl handlers dealing with virtualized sysctls, the
SYSCTL_RESOLVE_V_ARG1() macro will compute the address of the target
variable and make it available in arg1 variable for further processing.
Unused fields in structs vnet_inet, vnet_inet6 and vnet_ipfw have
been deleted.
Reviewed by: bz, rwatson
Approved by: julian (mentor)
TCPSTAT_INC(), rather than directly manipulating the fields across the
kernel. This will make it easier to change the implementation of
these statistics, such as using per-CPU versions of the data structures.
MFC after: 3 days
The new behaviour is on by default, and can be disabled by setting the
net.inet.tcp.rfc3465 sysctl to 0 to obtain previous behaviour.
The patch changes struct tcpcb in sys/netinet/tcp_var.h which breaks
the ABI. Bump __FreeBSD_version to 800061 accordingly. User space tools
that rely on the size of struct tcpcb (e.g. sockstat) need to be recompiled.
Reviewed by: rpaulo, gnn
Approved by: gnn, kmacy (mentors)
Sponsored by: FreeBSD Foundation
but formerly missed under VIMAGE_GLOBAL.
Put the extern declarations of the virtualized globals
under VIMAGE_GLOBAL as the globals themsevles are already.
This will help by the time when we are going to remove the globals
entirely.
Sponsored by: The FreeBSD Foundation
missed under VIMAGE_GLOBAL.
Start putting the extern declarations of the virtualized globals
under VIMAGE_GLOBAL as the globals themsevles are already.
This will help by the time when we are going to remove the globals
entirely.
While there garbage collect a few dead externs from ip6_var.h.
Sponsored by: The FreeBSD Foundation
for virtualization.
Instead of initializing the affected global variables at instatiation,
assign initial values to them in initializer functions. As a rule,
initialization at instatiation for such variables should never be
introduced again from now on. Furthermore, enclose all instantiations
of such global variables in #ifdef VIMAGE_GLOBALS blocks.
Essentialy, this change should have zero functional impact. In the next
phase of merging network stack virtualization infrastructure from
p4/vimage branch, the new initialization methology will allow us to
switch between using global variables and their counterparts residing in
virtualization containers with minimum code churn, and in the long run
allow us to intialize multiple instances of such container structures.
Discussed at: devsummit Strassburg
Reviewed by: bz, julian
Approved by: julian (mentor)
Obtained from: //depot/projects/vimage-commit2/...
X-MFC after: never
Sponsored by: NLnet Foundation, The FreeBSD Foundation
tcp_mss() and tcp_mss_update() so that tcp_mtudisc() could
re-use the same code.
Move the TSO logic back to tcp_mss() and out of tcp_mss_update().
We tried to avoid that initially but if were are called from
tcp_output() with EMSGSIZE, we cleared the TSO flag on the tcpcb
there, called into tcp_mtudisc() and tcp_mss_update() which
then would reenable TSO on the tcpcb based on TSO capabilities
of the interface as learnt in tcp_maxmtu/6().
So if TSO was enabled on the (possibly new) outgoing interface
it was turned back on, which lead to an endless loop between
tcp_output() and tcp_mtudisc() until we overflew the stack.
Reported by: kmacy
MFC after: 2 months (along with r182851)
calls the latter.
Merge tcp_mss_update() with code from tcp_mtudisc() basically
doing the same thing.
This gives us one central place where we calcuate and check mss values
to update t_maxopd (maximum mss + options length) instead of two slightly
different but almost equal implementations to maintain.
PR: kern/118455
Reviewed by: silby (back in March)
MFC after: 2 months
A lot of testing has shown that the problem people were seeing was due
to invalid padding after the end of option list option, which was corrected
in tcp_output.c rev. 1.146.
Thanks to: anders@, s3raphi, Matt Reimer
Thanks to: Doug Hardie and Randy Rose, John Mayer, Susan Guzzardi
Special thanks to: dwhite@ and BitGravity
Discussed with: silby
MFC after: 1 day
the same order that FreeBSD 6 and before did. Doug
White and the other bloodhounds at ISC discovered that
while FreeBSD 7's ordering of options was more efficient,
it caused some cable modem routers to ignore the
SYN-ACKs ordered in this fashion.
The placement of sackOK after the timestamp option seems
to be the critical difference:
FreeBSD 6:
<mss 1460,nop,wscale 1,nop,nop,timestamp 3512155768 0,sackOK,eol>
FreeBSD 7.0:
<mss 1460,nop,wscale 3,sackOK,timestamp 1370692577 0>
FreeBSD 7.0 + this change:
<mss 1460,nop,wscale 3,nop,nop,timestamp 7371813 0,sackOK,eol>
MFC after: 1 week
- Reintegrate the ANSI C function declaration change
from tcp_timer.c rev 1.92
- Reorganize the tcpcb structure so that it has a single
pointer to the "tcp_timer" structure which contains all
of the tcp timer callouts. This change means that when
the single tcp timer change is reintegrated, tcpcb will
not change in size, and therefore the ABI between
netstat and the kernel will not change.
Neither of these changes should have any functional
impact.
Reviewed by: bmah, rrs
Approved by: re (bmah)
TCP timers as a single timer, but retain the API changes necessary to
reintroduce this change. This will back out the source of at least two
reported problems: lock leaks in certain timer edge cases, and TCP timers
continuing to fire after a connection has closed (a bug previously fixed and
then reintroduced with the timer rewrite).
In a follow-up commit, some minor restylings and comment changes performed
after the TCP timer rewrite will be reapplied, and a further change to allow
the TCP timer rewrite to be added back without disturbing the ABI. The new
design is believed to be a good thing, but the outstanding issues are
leading to significant stability/correctness problems that are holding
up 7.0.
This patch was generated by silby, but is being committed by proxy due to
poor network connectivity for silby this week.
Approved by: re (kensmith)
Submitted by: silby
Tested by: rwatson, kris
Problems reported by: peter, kris, others
sys.net.inet.tcp.log_debug = 1
It defaults to enabled for the moment and is to be turned off for
the next release like other diagnostics from development branches.
It is important to note that sysctl sys.net.inet.tcp.log_in_vain
uses the same logging function as log_debug. Enabling of the former
also causes the latter to engage, but not vice versa.
Use consistent terminology in tcp log messages:
"ignored" means a segment contains invalid flags/information and
is dropped without changing state or issuing a reply.
"rejected" means a segments contains invalid flags/information but
is causing a reply (usually RST) and may cause a state change.
Approved by: re (rwatson)
in tcp_input():
o tighten the checks on allowed TCP flags to be RFC793 and
tcp-secure conform
o log check failures to syslog at LOG_DEBUG level
o rearrange the code flow to be easier to follow
o add KASSERTs to validate assumptions of the code flow
Add sysctl net.inet.tcp.syncache.rst_on_sock_fail defaulting to enable
that controls the behavior on socket creation failure for a otherwise
successful 3-way handshake. The socket creation can fail due to global
memory shortage, listen queue limits and file descriptor limits. The
sysctl allows to chose between two options to deal with this. One is
to send a reset to the other endpoint to notify it about the failure
(default). The other one is to ignore and treat the failure as a
transient error and have the other endpoint retransmit for another try.
Reviewed by: rwatson (in general)
for use thoughout the tcp subsystem.
It is IPv4 and IPv6 aware creates a line in the following format:
"TCP: [1.2.3.4]:50332 to [1.2.3.4]:80 tcpflags <RST>"
A "\n" is not included at the end. The caller is supposed to add
further information after the standard tcp log header.
The function returns a NUL terminated string which the caller has
to free(s, M_TCPLOG) after use. All memory allocation is done
with M_NOWAIT and the return value may be NULL in memory shortage
situations.
Either struct in_conninfo || (struct tcphdr && (struct ip || struct
ip6_hdr) have to be supplied.
Due to ip[6].h header inclusion limitations and ordering issues the
struct ip and struct ip6_hdr parameters have to be casted and passed
as void * pointers.
tcp_log_addrs(struct in_conninfo *inc, struct tcphdr *th, void *ip4hdr,
void *ip6hdr)
Usage example:
struct ip *ip;
char *tcplog;
if (tcplog = tcp_log_addrs(NULL, th, (void *)ip, NULL)) {
log(LOG_DEBUG, "%s; %s: Connection attempt to closed port\n",
tcplog, __func__);
free(s, M_TCPLOG);
}
other than repo copied tcp_subr.c into tcp_timewait.c#1.284:
tcp_input.c#1.350 tcp_timewait() -> tcp_twcheck()
tcp_timer.c#1.92 tcp_timer_2msl_reset() -> tcp_tw_2msl_reset()
tcp_timer.c#1.92 tcp_timer_2msl_stop() -> tcp_tw_2msl_stop()
tcp_timer.c#1.92 tcp_timer_2msl_tw() -> tcp_tw_2msl_scan()
This is a mechanical move with appropriate renames and making
them static if used only locally.
The tcp_tw_2msl_scan() cleanup function is still run from the
tcp_slowtimo() in tcp_timer.c.
functions from their origininal place to their own files.
TCP Reassembly from tcp_input.c -> tcp_reass.c
TCP Timewait from tcp_subr.c -> tcp_timewait.c
state tcp_debug, tcp_debx. Acquire and drop as required in tcp_trace().
Move to ANSI C function header, correct prototype types so that short TCP
state is no longer promoted to int unnecessarily.
Add comments.
MFC after: 3 weeks
from the incoming SYN handling section of tcp_input().
Enforcement of the accept queue limits is done by sonewconn() after the
3WHS is completed. It is not necessary to have an earlier check before a
connection request enters the SYN cache awaiting the full handshake. It
rather limits the effectiveness of the syncache by preventing legit and
illegit connections from entering it and having them shaken out before we
hit the real limit which may have vanished by then.
Change return value of syncache_add() to void. No status communication
is required.
directly to a merged model where only one callout, the next to fire,
is registered.
Instead of callout_reset(9) and callout_stop(9) the new function
tcp_timer_activate() is used which then internally manages the callout.
The single new callout is a mutex callout on inpcb simplifying the
locking a bit.
tcp_timer() is the called function which handles all race conditions
in one place and then dispatches the individual timer functions.
Reviewed by: rwatson (earlier version)
and syncache_respond() into its own generic function tcp_addoptions().
tcp_addoptions() is alignment agnostic and does optimal packing in all cases.
In struct tcpopt rename to_requested_s_scale to just to_wscale.
Add a comment with quote from RFC1323: "The Window field in a SYN (i.e.,
a <SYN> or <SYN,ACK>) segment itself is never scaled."
Reviewed by: silby, mohans, julian
Sponsored by: TCP/IP Optimization Fundraise 2005
potential issues where the peer does not close, potentially leaving
thousands of connections in FIN_WAIT_2. This is controlled by a new sysctl
fast_finwait2_recycle, which is disabled by default.
Reviewed by: gnn, silby.
Normally the socket buffers are static (either derived from global
defaults or set with setsockopt) and do not adapt to real network
conditions. Two things happen: a) your socket buffers are too small
and you can't reach the full potential of the network between both
hosts; b) your socket buffers are too big and you waste a lot of
kernel memory for data just sitting around.
With automatic TCP send and receive socket buffers we can start with a
small buffer and quickly grow it in parallel with the TCP congestion
window to match real network conditions.
FreeBSD has a default 32K send socket buffer. This supports a maximal
transfer rate of only slightly more than 2Mbit/s on a 100ms RTT
trans-continental link. Or at 200ms just above 1Mbit/s. With TCP send
buffer auto scaling and the default values below it supports 20Mbit/s
at 100ms and 10Mbit/s at 200ms. That's an improvement of factor 10, or
1000%. For the receive side it looks slightly better with a default of
64K buffer size.
New sysctls are:
net.inet.tcp.sendbuf_auto=1 (enabled)
net.inet.tcp.sendbuf_inc=8192 (8K, step size)
net.inet.tcp.sendbuf_max=262144 (256K, growth limit)
net.inet.tcp.recvbuf_auto=1 (enabled)
net.inet.tcp.recvbuf_inc=16384 (16K, step size)
net.inet.tcp.recvbuf_max=262144 (256K, growth limit)
Tested by: many (on HEAD and RELENG_6)
Approved by: re
MFC after: 1 month
functionality:
- Remove a rwlock aquisition/release per generated syncookie. Locking
is now integrated with the bucket row locking of syncache itself and
syncookies no longer add any additional lock overhead.
- Syncookie secrets are different for and stored per syncache buck row.
Secrets expire after 16 seconds and are reseeded on-demand.
- The computational overhead for syncookie generation and verification
is one MD5 hash computation as before.
- Syncache can be turned off and run with syncookies only by setting the
sysctl net.inet.tcp.syncookies_only=1.
This implementation extends the orginal idea and first implementation
of FreeBSD by using not only the initial sequence number field to store
information but also the timestamp field if present. This way we can
keep track of the entire state we need to know to recreate the session in
its original form. Almost all TCP speakers implement RFC1323 timestamps
these days. For those that do not we still have to live with the known
shortcomings of the ISN only SYN cookies. The use of the timestamp field
causes the timestamps to be randomized if syncookies are enabled.
The idea of SYN cookies is to encode and include all necessary information
about the connection setup state within the SYN-ACK we send back and thus
to get along without keeping any local state until the ACK to the SYN-ACK
arrives (if ever). Everything we need to know should be available from
the information we encoded in the SYN-ACK.
A detailed description of the inner working of the syncookies mechanism
is included in the comments in tcp_syncache.c.
Reviewed by: silby (slightly earlier version)
Sponsored by: TCP/IP Optimization Fundraise 2005
timeouts for TCP and T/TCP connections in the TIME_WAIT
state, and we had two separate timed wait queues for them.
Now that is has gone, the timeout is always 2*MSL again,
and there is no reason to keep two queues (the first was
unused anyway!).
Also, reimplement the remaining queue using a TAILQ (it
was technically impossible before, with two queues).
o add IFCAP_TSO[46] for drivers to announce this capability for IPv4 and IPv6
o add CSUM_TSO flag to mbuf pkthdr csum_flags field
o add tso_segsz field to mbuf pkthdr
o enhance ip_output() packet length check to allow for large TSO packets
o extend tcp_maxmtu[46]() with a flag pointer to pass interface capabilities
o adjust all callers of tcp_maxmtu[46]() accordingly
Discussed on: -current, -net
Sponsored by: TCP/IP Optimization Fundraise 2005
bad under high load. For example with 40k sockets and 25k tcptw
entries, connect() syscall can run for seconds. Debugging showed
that it iterates the cycle millions times and purges thousands of
tcptw entries at a time.
Besides practical unusability this change is architecturally
wrong. First, in_pcblookup_local() is used in connect() and bind()
syscalls. No stale entries purging shouldn't be done here. Second,
it is a layering violation.
o Return back the tcptw purging cycle to tcp_timer_2msl_tw(),
that was removed in rev. 1.78 by rwatson. The commit log of this
revision tells nothing about the reason cycle was removed. Now
we need this cycle, since major cleaner of stale tcptw structures
is removed.
o Disable probably necessary, but now unused
tcp_twrecycleable() function.
Reviewed by: ru
o redefine the parameter 'is_syn' to 'flags', add TO_SYN flag and adjust its
usage accordingly
o update the comments to the tcp_dooptions() invocation in
tcp_input():after_listen to reflect reality
o move the logic checking the echoed timestamp out of tcp_dooptions() to the
only place that uses it next to the invocation described in the previous
item
o adjust parsing of TCPOPT_SACK_PERMITTED to use the same style as the others
o add comments in to struct tcpopt.to_flags #defines
No functional changes.
Sponsored by: TCP/IP Optimization Fundraise 2005
as possible for the syncache_add() case. The syncache timer no longer
aquires the tcpinfo lock and timeout/retransmit runs can happen in
parallel with bucket granularity.
On a P4 the additional locks cause a slight degression of 0.7% in tcp
connections per second. When IP and TCP input are deserialized and
can run in parallel this little overhead can be neglected. The syncookie
handling still leaves room for improvement and its random salts may be
moved to the syncache bucket head structures to remove the second lock
operation currently required for it. However this would be a more
involved change from the way syncookies work at the moment.
Reviewed by: rwatson
Tested by: rwatson, ps (earlier version)
Sponsored by: TCP/IP Optimization Fundraise 2005
pru_abort(), pru_detach(), and in_pcbdetach():
- Universally support and enforce the invariant that so_pcb is
never NULL, converting dozens of unnecessary NULL checks into
assertions, and eliminating dozens of unnecessary error handling
cases in protocol code.
- In some cases, eliminate unnecessary pcbinfo locking, as it is no
longer required to ensure so_pcb != NULL. For example, the receive
code no longer requires the pcbinfo lock, and the send code only
requires it if building a new connection on an otherwise unconnected
socket triggered via sendto() with an address. This should
significnatly reduce tcbinfo lock contention in the receive and send
cases.
- In order to support the invariant that so_pcb != NULL, it is now
necessary for the TCP code to not discard the tcpcb any time a
connection is dropped, but instead leave the tcpcb until the socket
is shutdown. This case is handled by setting INP_DROPPED, to
substitute for using a NULL so_pcb to indicate that the connection
has been dropped. This requires the inpcb lock, but not the pcbinfo
lock.
- Unlike all other protocols in the tree, TCP may need to retain access
to the socket after the file descriptor has been closed. Set
SS_PROTOREF in tcp_detach() in order to prevent the socket from being
freed, and add a flag, INP_SOCKREF, so that the TCP code knows whether
or not it needs to free the socket when the connection finally does
close. The typical case where this occurs is if close() is called on
a TCP socket before all sent data in the send socket buffer has been
transmitted or acknowledged. If INP_SOCKREF is found when the
connection is dropped, we release the inpcb, tcpcb, and socket instead
of flagging INP_DROPPED.
- Abort and detach protocol switch methods no longer return failures,
nor attempt to free sockets, as the socket layer does this.
- Annotate the existence of a long-standing race in the TCP timer code,
in which timers are stopped but not drained when the socket is freed,
as waiting for drain may lead to deadlocks, or have to occur in a
context where waiting is not permitted. This race has been handled
by testing to see if the tcpcb pointer in the inpcb is NULL (and vice
versa), which is not normally permitted, but may be true of a inpcb
and tcpcb have been freed. Add a counter to test how often this race
has actually occurred, and a large comment for each instance where
we compare potentially freed memory with NULL. This will have to be
fixed in the near future, but requires is to further address how to
handle the timer shutdown shutdown issue.
- Several TCP calls no longer potentially free the passed inpcb/tcpcb,
so no longer need to return a pointer to indicate whether the argument
passed in is still valid.
- Un-macroize debugging and locking setup for various protocol switch
methods for TCP, as it lead to more obscurity, and as locking becomes
more customized to the methods, offers less benefit.
- Assert copyright on tcp_usrreq.c due to significant modifications that
have been made as part of this work.
These changes significantly modify the memory management and connection
logic of our TCP implementation, and are (as such) High Risk Changes,
and likely to contain serious bugs. Please report problems to the
current@ mailing list ASAP, ideally with simple test cases, and
optionally, packet traces.
MFC after: 3 months
right from the beginning and partly clean up the differences in handling
between SYN_SENT and SYN_RCVD (syncache).
Further changes to this code to come. This is a first incremental step
to a general overhaul and streamlining of the TCP code.
PR: kern/15095
PR: kern/92690 (partly)
Reviewed by: qingli (and tested with ANVL)
Sponsored by: TCP/IP Optimization Fundraise 2005
threshold. Inflight doesn't make sense on a LAN as it has
trouble figuring out the maximal bandwidth because of the coarse
tick granularity.
The sysctl net.inet.tcp.inflight.rttthresh specifies the threshold
in milliseconds below which inflight will disengage. It defaults
to 10ms.
Tested by: Joao Barros <joao.barros-at-gmail.com>,
Rich Murphey <rich-at-whiteoaklabs.com>
Sponsored by: TCP/IP Optimization Fundraise 2005
processing is now done in the ACK processing case.
- Merge tcp_sack_option() and tcp_del_sackholes() into a new function
called tcp_sack_doack().
- Test (SEG.ACK < SND.MAX) before processing the ACK.
Submitted by: Noritoshi Demizu
Reveiewed by: Mohan Srinivasan, Raja Mukerji
Approved by: re