are some good reasons for not doing this, even if the linting of
the code breaks.
1) If lint were ever to understand the stuff inside the macros,
that would break the checks.
2) There are ways to use __GNUC__ to exclude overly specific
code.
3) (Not yet practical) Lint(1) needs to properlyu understand
all of te code we actually run.
Complained about by: bde
Education by: jake, jhb, eivind
It is described in ufs/ffs/fs.h as follows:
/*
* Filesystem flags.
*
* Note that the FS_NEEDSFSCK flag is set and cleared only by the
* fsck utility. It is set when background fsck finds an unexpected
* inconsistency which requires a traditional foreground fsck to be
* run. Such inconsistencies should only be found after an uncorrectable
* disk error. A foreground fsck will clear the FS_NEEDSFSCK flag when
* it has successfully cleaned up the filesystem. The kernel uses this
* flag to enforce that inconsistent filesystems be mounted read-only.
*/
#define FS_UNCLEAN 0x01 /* filesystem not clean at mount */
#define FS_DOSOFTDEP 0x02 /* filesystem using soft dependencies */
#define FS_NEEDSFSCK 0x04 /* filesystem needs sync fsck before mount */
and non-P_SUGID cases, simplify p_cansignal() logic so that the
P_SUGID masking of possible signals is independent from uid checks,
removing redundant code and generally improving readability.
Reviewed by: tmm
Obtained from: TrustedBSD Project
the ability of unprivileged processes to deliver arbitrary signals
to daemons temporarily taking on unprivileged effective credentials
when P_SUGID is not set on the target process:
Removed:
(p1->p_cred->cr_ruid != ps->p_cred->cr_uid)
(p1->p_ucred->cr_uid != ps->p_cred->cr_uid)
o Replace two "allow this" exceptions in p_cansignal() restricting
the ability of unprivileged processes to deliver arbitrary signals
to daemons temporarily taking on unprivileged effective credentials
when P_SUGID is set on the target process:
Replaced:
(p1->p_cred->p_ruid != p2->p_ucred->cr_uid)
(p1->p_cred->cr_uid != p2->p_ucred->cr_uid)
With:
(p1->p_cred->p_ruid != p2->p_ucred->p_svuid)
(p1->p_ucred->cr_uid != p2->p_ucred->p_svuid)
o These changes have the effect of making the uid-based handling of
both P_SUGID and non-P_SUGID signal delivery consistent, following
these four general cases:
p1's ruid equals p2's ruid
p1's euid equals p2's ruid
p1's ruid equals p2's svuid
p1's euid equals p2's svuid
The P_SUGID and non-P_SUGID cases can now be largely collapsed,
and I'll commit this in a few days if no immediate problems are
encountered with this set of changes.
o These changes remove a number of warning cases identified by the
proc_to_proc inter-process authorization regression test.
o As these are new restrictions, we'll have to watch out carefully for
possible side effects on running code: they seem reasonable to me,
but it's possible this change might have to be backed out if problems
are experienced.
Submitted by: src/tools/regression/security/proc_to_proc/testuid
Reviewed by: tmm
Obtained from: TrustedBSD Project
ability of unprivileged processes to modify the scheduling properties
of daemons temporarily taking on unprivileged effective credentials.
These cases (p1->p_cred->p_ruid == p2->p_ucred->cr_uid) and
(p1->p_ucred->cr_uid == p2->p_ucred->cr_uid), respectively permitting
a subject process to influence the scheduling of a daemon if the subject
process has the same real uid or effective uid as the daemon's effective
uid. This removes a number of the warning cases identified by the
proc_to_proc iner-process authorization regression test.
o As these are new restrictions, we'll have to watch out carefully for
possible side effects on running code: they seem reasonable to me,
but it's possible this change might have to be backed out if problems
are experienced.
Reported by: src/tools/regression/security/proc_to_proc/testuid
Obtained from: TrustedBSD Project
by p_can(...P_CAN_SEE), rather than returning EACCES directly. This
brings the error code used here into line with similar arrangements
elsewhere, and prevents the leakage of pid usage information.
Reviewed by: jlemon
Obtained from: TrustedBSD Project
p_can(...P_CAN_SEE...) to getpgid(), getsid(), and setpgid(),
blocking these operations on processes that should not be visible
by the requesting process. Required to reduce information leakage
in MAC environments.
Obtained from: TrustedBSD Project
from signal authorization checking.
o p_cansignal() takes three arguments: subject process, object process,
and signal number, unlike p_cankill(), which only took into account
the processes and not the signal number, improving the abstraction
such that CANSIGNAL() from kern_sig.c can now also be eliminated;
previously CANSIGNAL() special-cased the handling of SIGCONT based
on process session. privused is now deprecated.
o The new p_cansignal() further limits the set of signals that may
be delivered to processes with P_SUGID set, and restructures the
access control check to allow it to be extended more easily.
o These changes take into account work done by the OpenBSD Project,
as well as by Robert Watson and Thomas Moestl on the TrustedBSD
Project.
Obtained from: TrustedBSD Project
toggle the P_SUGID bit explicitly, rather than relying on it being
set implicitly by other protection and credential logic. This feature
is introduced to support inter-process authorization regression testing
by simplifying userland credential management allowing the easy
isolation and reproduction of authorization events with specific
security contexts. This feature is enabled only by "options REGRESSION"
and is not intended to be used by applications. While the feature is
not known to introduce security vulnerabilities, it does allow
processes to enter previously inaccessible parts of the credential
state machine, and is therefore disabled by default. It may not
constitute a risk, and therefore in the future pending further analysis
(and appropriate need) may become a published interface.
Obtained from: TrustedBSD Project
interfaces and functionality intended for use during correctness and
regression testing. Features enabled by "options REGRESSION" may
in and of themselves introduce security or correctness problems if
used improperly, and so are not intended for use in production
systems, only in testing environments.
Obtained from: TrustedBSD Project
enable easy access to the hash chain stats. The raw prefixed versions
dump an integer array to userland with the chain lengths. This cheats
and calls it an array of 'struct int' rather than 'int' or sysctl -a
faithfully dumps out the 128K array on an average machine. The non-raw
versions return 4 integers: count, number of chains used, maximum chain
length, and percentage utilization (fixed point, multiplied by 100).
The raw forms are more useful for analyzing the hash distribution, while
the other form can be read easily by humans and stats loggers.
API for IPI's that isn't tied to the Intel APIC. MD code can still use
the apic_ipi() function or dink with the apic directly if needed to send
MD IPI's.
because:
- it used a better namespace (smp_ipi_* rather than *_ipi),
- it used better constant names for the IPI's (IPI_* rather than
X*_OFFSET), and
- this API also somewhat exists for both alpha and ia64 already.
codecs. Also, add some additional code to check for future cards without
this feature - attempting to initialise them as AC97 cards will hang the
machine.
PR: 26427
Reviewed by: cg
His description of the problem and solution follow. My own tests show
speedups on typical filesystem intensive workloads of 5% to 12% which
is very impressive considering the small amount of code change involved.
------
One day I noticed that some file operations run much faster on
small file systems then on big ones. I've looked at the ffs
algorithms, thought about them, and redesigned the dirpref algorithm.
First I want to describe the results of my tests. These results are old
and I have improved the algorithm after these tests were done. Nevertheless
they show how big the perfomance speedup may be. I have done two file/directory
intensive tests on a two OpenBSD systems with old and new dirpref algorithm.
The first test is "tar -xzf ports.tar.gz", the second is "rm -rf ports".
The ports.tar.gz file is the ports collection from the OpenBSD 2.8 release.
It contains 6596 directories and 13868 files. The test systems are:
1. Celeron-450, 128Mb, two IDE drives, the system at wd0, file system for
test is at wd1. Size of test file system is 8 Gb, number of cg=991,
size of cg is 8m, block size = 8k, fragment size = 1k OpenBSD-current
from Dec 2000 with BUFCACHEPERCENT=35
2. PIII-600, 128Mb, two IBM DTLA-307045 IDE drives at i815e, the system
at wd0, file system for test is at wd1. Size of test file system is 40 Gb,
number of cg=5324, size of cg is 8m, block size = 8k, fragment size = 1k
OpenBSD-current from Dec 2000 with BUFCACHEPERCENT=50
You can get more info about the test systems and methods at:
http://www.ptci.ru/gluk/dirpref/old/dirpref.html
Test Results
tar -xzf ports.tar.gz rm -rf ports
mode old dirpref new dirpref speedup old dirprefnew dirpref speedup
First system
normal 667 472 1.41 477 331 1.44
async 285 144 1.98 130 14 9.29
sync 768 616 1.25 477 334 1.43
softdep 413 252 1.64 241 38 6.34
Second system
normal 329 81 4.06 263.5 93.5 2.81
async 302 25.7 11.75 112 2.26 49.56
sync 281 57.0 4.93 263 90.5 2.9
softdep 341 40.6 8.4 284 4.76 59.66
"old dirpref" and "new dirpref" columns give a test time in seconds.
speedup - speed increasement in times, ie. old dirpref / new dirpref.
------
Algorithm description
The old dirpref algorithm is described in comments:
/*
* Find a cylinder to place a directory.
*
* The policy implemented by this algorithm is to select from
* among those cylinder groups with above the average number of
* free inodes, the one with the smallest number of directories.
*/
A new directory is allocated in a different cylinder groups than its
parent directory resulting in a directory tree that is spreaded across
all the cylinder groups. This spreading out results in a non-optimal
access to the directories and files. When we have a small filesystem
it is not a problem but when the filesystem is big then perfomance
degradation becomes very apparent.
What I mean by a big file system ?
1. A big filesystem is a filesystem which occupy 20-30 or more percent
of total drive space, i.e. first and last cylinder are physically
located relatively far from each other.
2. It has a relatively large number of cylinder groups, for example
more cylinder groups than 50% of the buffers in the buffer cache.
The first results in long access times, while the second results in
many buffers being used by metadata operations. Such operations use
cylinder group blocks and on-disk inode blocks. The cylinder group
block (fs->fs_cblkno) contains struct cg, inode and block bit maps.
It is 2k in size for the default filesystem parameters. If new and
parent directories are located in different cylinder groups then the
system performs more input/output operations and uses more buffers.
On filesystems with many cylinder groups, lots of cache buffers are
used for metadata operations.
My solution for this problem is very simple. I allocate many directories
in one cylinder group. I also do some things, so that the new allocation
method does not cause excessive fragmentation and all directory inodes
will not be located at a location far from its file's inodes and data.
The algorithm is:
/*
* Find a cylinder group to place a directory.
*
* The policy implemented by this algorithm is to allocate a
* directory inode in the same cylinder group as its parent
* directory, but also to reserve space for its files inodes
* and data. Restrict the number of directories which may be
* allocated one after another in the same cylinder group
* without intervening allocation of files.
*
* If we allocate a first level directory then force allocation
* in another cylinder group.
*/
My early versions of dirpref give me a good results for a wide range of
file operations and different filesystem capacities except one case:
those applications that create their entire directory structure first
and only later fill this structure with files.
My solution for such and similar cases is to limit a number of
directories which may be created one after another in the same cylinder
group without intervening file creations. For this purpose, I allocate
an array of counters at mount time. This array is linked to the superblock
fs->fs_contigdirs[cg]. Each time a directory is created the counter
increases and each time a file is created the counter decreases. A 60Gb
filesystem with 8mb/cg requires 10kb of memory for the counters array.
The maxcontigdirs is a maximum number of directories which may be created
without an intervening file creation. I found in my tests that the best
performance occurs when I restrict the number of directories in one cylinder
group such that all its files may be located in the same cylinder group.
There may be some deterioration in performance if all the file inodes
are in the same cylinder group as its containing directory, but their
data partially resides in a different cylinder group. The maxcontigdirs
value is calculated to try to prevent this condition. Since there is
no way to know how many files and directories will be allocated later
I added two optimization parameters in superblock/tunefs. They are:
int32_t fs_avgfilesize; /* expected average file size */
int32_t fs_avgfpdir; /* expected # of files per directory */
These parameters have reasonable defaults but may be tweeked for special
uses of a filesystem. They are only necessary in rare cases like better
tuning a filesystem being used to store a squid cache.
I have been using this algorithm for about 3 months. I have done
a lot of testing on filesystems with different capacities, average
filesize, average number of files per directory, and so on. I think
this algorithm has no negative impact on filesystem perfomance. It
works better than the default one in all cases. The new dirpref
will greatly improve untarring/removing/coping of big directories,
decrease load on cvs servers and much more. The new dirpref doesn't
speedup a compilation process, but also doesn't slow it down.
Obtained from: Grigoriy Orlov <gluk@ptci.ru>
s/1518/ETHER_MAX_LEN
Some style changes, add some braces, mostly residual from having
a lot of debug hooks added while working on this driver.
Bring in a plethora of changes from NetBSD:
revision 1.58
date: 2001/03/08 11:07:08; author: ichiro; state: Exp; lines: +17 -1
it wait until busy flag disappears.
it was able to prevent some cards with late initializing faling in wi_reset().
revision 1.41
date: 2000/10/13 19:15:08; author: jonathan; state: Exp; lines: +4 -2
Fix wi_intr() to avoid touching card registers during insert/remove events,
when sharing an interrupt with other devices:
check sc->sc_enabled, and drop the interrupt if its' off.
revision 1.30
date: 2000/08/18 04:11:48; author: jhawk; state: Exp; lines: +4 -4
Copy wi_{dst,src}_addr from struct wi_frame into faked-up ether_header
instead of addr1 and addr2. THis means that tcpdump -e will show the
correct MAC address for communications with access points instead of showing
the BSSID.
In the future there should be 802.11 support for bpf/libpcap/tcpdump,
but that is aways down the road.
count drops to 0 in witness_destroy, set the w_name and w_file pointers
to point to the string "(dead)" and the w_line field to 0. This way,
if a mutex of a given name is used only in a module, then as long as
all mutexes in the module are destroyed when the module is unloaded,
witness will not maintain stale references to the mutex's name in the
module's data section causing a panic later on when the w_name or w_file
field's are examined.
1. Pick up MII/PHY support for Livengood copper part (10/100/1000) from
Parag Patel. It was a fairly complete but not quite platform independent
job.
2. Finish silly offset differences that LIVENGOOD vs. WISEMAN registers
have (so the !)$*!)$*!$ fiber LIVENGOOD now works too).
3. Ansify the source.
So- we now suppor tthe PRO1000F and PRO1000T adapters.
1. The offsets for some registers change in LIVENGOOD. Gratuitously.
2. Define LIVENGOOD and LIVENGOOD_CU part numbers. Add some more
specific LIVENGOOD defaults.
3. Add definitions for PHY support for the copper LIVENGOOD part
(10/100/1000).
Since pid's are not in the kernel address space, this doesn't conflict
with the funcionality of specifying an arbitrary frame pointer to the
trace command.
- If the first function of a backtrace maps to fork_trampoline, then this
is a newly fork'd process that has not been executed yet, so just print
out the first frame and then return for that case.
- Lower the default count from 65535 to 1024. ddb doesn't trace into
userland, and if the stack gets hosed and starts looping it's less
annoying.
Parag Patel did all of the grunt work, so he gets the credit.
Register definitions and actions inferred from a Linux driver,
so Intel also gets some 'credit'.
the main benefit this gives for now is that via686 audio devices on
motherboards with ac97 codecs that do not support vra will be able to use
sample rates other than 48khz.
Add simple "xlat" converter which performs 8to8 table based conversion.
Unicode converter will be added in the near future.
Reviewed by: silence on arch@
Files placement reviewed by: bde
Obtained from: smbfs
o Change the number of init tries from 5 to a #define.
o Allow up to 5s rather than 2s for commands to complete. This
is still much less than 51 minutes, but makes my intel card init
with more reliability than before.
possible for some systems where the device is there, but the BIOS
hasn't allocated memory resources for it), we don't panic.
Submitted by: Gerard Roudier
peer out from sppp_lcp_open() to sppp_lcp_up(). For one, this makes
things look more symmetrical to sppp_lcp_close(), and somehow it also
just occurred to me that an Up event following the open caused the
value of the authentication option to be clobbered.
badaddr_read(). This fixes 'machine check in pal mode' halts on
ev5 2100As.
MFC candidate -- after spending 6 hours tracking this down, I checked and
discovered that it has been in NetBSD for over a year, so it should be safe
for MFC into 4.3-RELEASE
It's not finished yet (I still have to find a way to implement process-
dependent nodes without consuming too much memory, and the permission
system needs tightening up), but it's becoming hard to work on without
a repo (I've accidentally almost nuked it once already), and it works
(except for the lack of process-dependent nodes, that is).
I was supposed to commit this a week ago, but timed out waiting for jkh
to reply to some questions I had. Pass him a spoonful of bad karma :)
Specifically, the cpuid, curproc, curpcb, npxproc, and idleproc members.
Also, if witness is compiled into the kernel, then a list of all the spin
locks held by this CPU is displayed. By default the information for the
current CPU is displayed, but a decimal cpu id may be specified as a
parameter to obtain information on a specific CPU.
list into a public witness_list_locks() function. Call this function
twice in witness_list() instead of using an evil goto.
- Adjust the 'show locks' command to take an optional parameter which
specifies the pid of a process to list the locks of. By default the
locks held by the current process are displayed.
Don't leak iospace when irq allocation fails. (call wi_free())
Call bus_release_resource() with the correct "rid" obtained from
bus_alloc_resource() that's saved in the softc instead of a hardcoded
0.
VFS operation, make use of the calling process's credential. This
solution may not be ideal (there are a number of other possible
proposals, including making use of the proc0 credential, adding a
credential argument to the VFSOP, and switching from a hard-coded
ucred to a hard-coded nfscred), it is simple and appears to
work. The arguments against using simply crget() are fairly
strong: it is the only place in the code (other than a nearly
identical invocation in ncp) where crget() is invoked, other than
in the process credential creation code; as ucred becomes extensible,
this use of crget() without appropriate context results in less and
less meaningful credential data. The implementation here will
probably be tweaked as a result of experimentation and further
exploration of the requirements. In the mean-time, it allows
progress to be made in ucred expansion for new security models without
causing a crash every time df is used on an NFS mounted file system.
This code has been interop tested against FreeBSD and Solaris NFS
servers. While using the process credentials should not introduce
interop problems, please let me know if any turn out to exist.
Reviewed by: freebsd-arch
Also place the macros under #ifdef _KERNEL. Equally hide the internal
structures such as the freelist structs which include condition variables.
Reviewed by: bde
Mostly suggested by: bde
immediate value or the accumulator. 0 is the chip's internal
representation for the accumulator, and so 0 is an invalid immediate value
when the accumulator can also be specified as an argument.
Submitted by: gibbs
overflow the request queue. The reason we want to do this is that we
now push out completed CTIOs as we complete them- this gets the QLogic
working on them quicker. So we need to know whether we can put the entire
burrito out before we start.
We now support conjoint status with data for the last CTIO for both Fibre
Channel and SCSI. Leave the old code in place in case we need to go back
(minor 3 line ifdef).
Ultra-ultra important- *don't* set rq->req_seg_count for non-data
target mode requests in isp_pci_dmasetup. D'oh- this is actually
the tag value area for a CTIO. What *was* I thinking? Boy howdy
does both aic7xxx and sym get awfully unhappy when on reconnect
you give them a constant '1' for a tag value.
function- we did it a bit cleaner. We only use this if a CTIO completes with
!CT_OK state. We now have managed to get away without having to poke around
and trying to find the original ATIO- the csio we're using has the tag_id
and lun values with it which is mostly what we need when we do the putback.
Make sure we correctly propagate AT_TQAE->CT_TQAE for tags. Make sure
we call ISP_DMAFREE only if we had DATA to move.
tag is active for an ATIO, and say that you want to reconnect with
a tag value in a CTIO have *never* been exercised until now. This lossage
derived from Solaris code where this stuff originally came from that is
about 7 years old. Amazing.
We now bundle the incoming tag (legal values are 0..256) as the low
16 bits of the ccb_accept_tio's at_tagid while we put the firmware
handle for this ATIO in the top 16 bits- define some macros to make
this cleaner.
Complete some Ansification.
Redo establishment of default SCSI parameters whether or not
we've been compiled for target mode. Unfortunately, the Qlogic
f/w is confused so that if we set all targets to be 'safe' (i.e.,
narrow/async), it will also then report narrow, async if we're
contacted in target mode from that target (acting in initiator
role). D'oh!
Fix ISPCTL_TOGGLE_TMODE to correctly enable the right channel for
dual channel cards. Add some more opcodes. Fix a stupid NULL
pointer bug.
* Set the CSRG SCCS ID to the revision this file is actually based on
(the file itself has been updated to Lite2 in rev. 1.4).
* Fix some typos in comments.
* Add a comment to the trailing #endif according to style(9)
Simplify initialization and remove offending DMA channel resets there.
The resets trash whatever is pointed to DMA registers, but at cmi_attach()
time the DMA registers have not been initialized with valid addresses.
Reviewed by: Cameron Grant <gandalf@vilnya.demon.co.uk>
It appears that some of the new PRISM2 cards need it.
Fail the probe if we fail to read the MAC address.
Fix a comment.
Delete the unload printf. The bus system now prints this message.
stylistic.
# Yes, this break K&R, but this file already used so many gcc extensions
# keeping K&R support seemed too anachronistic for me.
Didn't fix the bug where functions that can only be used in the kernel
are exported to userland.
that people use from userland in C++ programs. I've had this in my
tree for ages and just got bit by it not being in the real tree again.
This is a MFC candidate.
The mbuf and mcluster free lists now each "own" a condition variable,
m_starved.
- Clean up minor indentention issues in sys/mbuf.h caused by previous
commit.
to not using IO_SYNC. Expose a sysctl (debug.ufs_extattr_sync) for
enabling the use of IO_SYNC.
- Use of IO_SYNC substantially degrades ACL performance when a
default ACL is set on a directory, as there are four synchronous
writes initiated to define both supporting EAs for new
sub-directories, and to set the data; two for new files. Later, this
may be optimized to two writes for sub-directories, one for new
files.
- IO_SYNC does not substantially improve consistency properties due
to the poor consistency properties of existing permissions (which
ACLs are a superset of), due to interaction with soft updates,
and due to differences in handling consistency for data and file
system meta-data.
- In macro-benchmarks, this reduces the overhead of setting default
ACLs down to the same overhead as enabling ACLs on a file system
and not using them. Enabling ACLs still introduces a small
overhead (I measure 7% on a -j 2 buildworld with pre-allocated
EA backing store, but this is not rigorous testing, nor in any way
optimized).
- The sysctl will probably change to another administration method
(or at least, a better name) in the near future, but consistency
properties of EAs are still being worked out. The toggle is defined
right now to allow easier performance analysis and exploration
of possible guarantees.
Obtained from: TrustedBSD Project
Don't use atomic operations for the stats updating, instead protect
the counts with the mbuf mutex. Most twiddling of the stats was
done right before or after releasing a mutex. By doing this we
reduce the number of locked ops needed as well as allow a sysctl
to gain a consitant view of the entire stats structure.
In the future...
This will allow us to chain common mbuf operations that would
normally need to aquire/release 2 or 3 of the locks to build an
mbuf with a cluster or external data attached into a single op
requiring only one lock.
Simplify the per-cpu locks that are planned.
There's also some if (1) code that should check if the "how"
operation specifies blocking/non-blocking behavior, we _could_ make
it so that we hold onto the mutex through calls into kmem_alloc
when non-blocking requests are made, but for safety reasons we
currently drop and reaquire the mutex around the calls.
Also, note that calling kmem_alloc is rare and only happens during
a shortage so drop/re-getting the mutex will not be a common
occurance.
Remove some #define's that seemed to obfuscate the code to me.
Remove an extranious comment.
Remove an XXX, including mutex.h isn't a crime.
Reviewed by: bmilekic
avoid silly lock contention on sched_lock since in 2 out of the 3 places
that we call stop(), we get sched_lock right after calling it and we were
locking sched_lock inside of stop() anyways.
failures in MOD_LOAD.
Dodge duplicate make_dev() calls by (ab)using dev->si_drv2 to
remember if we created the device node via a dev_clone callback
before the d_open call.
Without this, ifpromisc() always fails (after setting the IFF_PROMISC
bit in ifp->if_flags) and bpf never bothers to turn promiscuous mode off.
PR: 20188
SIGCHLD to our parent process. Otherwise, we could block while obtaining
the process lock for our parent process and switch out while we were
in SSTOP. Even worse, when we try to resume from the mutex being blocked
on our p_stat will be SRUN, not SSTOP.
- Fix a comment above stop() to indicate that it requires that the proc lock
be held, not a proctree lock.
Reported by: markm
Sleuthing by: jake
under heavy use when default ACLs were bgin inherited by new files
or directories. This is done by removing a bug in default ACL
reading, and improving error handling for this failure case:
- Move the setting of the buffer length (len) variable to above the
ACL type (ap->a_type) switch rather than having it only for
ACL_TYPE_ACCESS. Otherwise, the len variable is unitialized in
the ACL_TYPE_DEFAULT case, which generally worked right, but could
result in failure.
- Add a check for a short/long read of the ACL_TYPE_DEFAULT type from
the underlying EA, resulting in EPERM rather than passing a
potentially corrupted ACL back to the caller (resulting "cleaner"
failures if the EA is damaged: right now, the caller will almost
always panic in the presence of a corrupted EA). This code is similar
to code in the ACL_TYPE_ACCESS handling in the previous switch case.
- While I'm fixing this code, remove a redundant bzero() of the ACL
reader buffer; it need only be initialized above the acl_type
switch.
Obtained from: TrustedBSD Project
operations on file descriptors, which complement the existing set of
calls, extattr_{delete,get,set}_file() which act on paths. In doing
so, restructure the system call implementation such that the two sets
of functions share most of the relevant code, rather than duplicating
it. This pushes the vnode locking into the shared code, but keeps
the copying in of some arguments in the system call code. Allowing
access via file descriptors reduces the opportunity for race
conditions when managing extended attributes.
Obtained from: TrustedBSD Project
ps_showallprocs such that if superuser is present to override process
hiding, the search falls through [to success]. When additional
restrictions are placed on process visibility, such as MAC, new clauses
will be placed above the return(0).
Obtained from: TrustedBSD Project
than a NOP. bounds_check_with_label() would return -1 yet NOT set any
of the bio flags to show an error. This meant the caller would not
properly see that bounds_check_with_label() did not do any work. This
prevented newfs(8) from being able to write a file system on any partition
other than `c' on a `ccd'.
The logs of this file do not tell _why_ bounds_check_with_label() was
emasculated. Nor are there any `XXX' comments. So we'll unemasculated
it, and see what breaks.
Submitted by: gallatin
a #defined constant, wrap a few long lines, etc... Also remove stupid
'all your base are belong to us' joke from comment that I don't really
care to see immortalized in the source tree.
- Added 4 speaker enable to initialization sequence.
- Removed delays between register pokes which appear to aggravate a
problem this card has sampling at 44.1kHz. With any form of delay,
skew relative to system clock at 44.1kHz is usually in range 0-25%
(now 0-3%). No other rates exhibit this problem.
- Changed structs cmi_* to sc_*.
Approved by: Cameron Grant <gandalf@vilnya.demon.co.uk>
aic7xxx_pci.c:
Enable board generation of interrupts only once our handler is
in place and all other setup has occurred.
aic7xxx.c:
More conversion of data types to ahc_* names. tmode_tstate and
tmode_lstate are the latest victims.
Clean up the check condition path by branching early rather
than indenting a giant block of code.
Add support for target mode initiated sync negotiation.
The code has been tested by forcing the feature on for
all devices, but for the moment is left inaccesible until
a decent mechanism for controlling the behavior is complete.
Implementing this feature required the removal of the
old "target message request" mechanism. The old method
required setting one of the 16 bit fields to initiate
negotiation with a particular target. This had the nice
effect of being easy to change the request and have it
effect the next command. We now set the MK_MESSAGE bit
on any new command when negotiation is required. When
the negotiation is successful, we walk through and clean
up the bit on any pending commands. Since we have to walk
the commands to reset the SCSI syncrate values so no additional
work is required. The only drawback of this approach is that
the negotiation is deferred until the next command is queued to
the controller. On the plus side, we regain two bytes of
sequencer scratch ram and 6 sequencer instructions.
When cleaning up a target mode instance, never remove the
"master" target mode state object. The master contains
all of the saved SEEPROM settings that control things like
transfer negotiations. This data will be cloned as the
defaults if a target mode instance is re-instantiated.
Correct a bug in ahc_set_width(). We neglected to update
the pending scbs to reflect the new parameters. Since
wide negotiation is almost always followed by sync
negotiation it is doubtful that this had any real
effect.
When in the target role, don't complain about
"Target Initiated" negotiation requests when an initiator
negotiates with us.
Defer enabling board interrupts until after ahc_intr_enable()
is called.
Pull all info that used to be in ahc_timeout for the FreeBSD
OSM into ahc_dump_card_state(). This info should be printed
out on all platforms.
aic7xxx.h:
Add the SCB_AUTO_NEGOITATE scb flag. This allows us to
discern the reason the MK_MESSAGE flag is set in the hscb
control byte. We only want to clear MK_MESSAGE in
ahc_update_pending_scbs() if the MK_MESSAGE was set due
to an auto transfer negotiation.
Add the auto_negotiate bitfield for each tstate so that
behavior can be controlled for each of our enabled SCSI
IDs.
Use a bus interrupt handler vector in our softc rather
than hard coding the PCI interrupt handler. This makes
it easier to build the different bus attachments to
the aic7xxx driver as modules.
aic7xxx.reg:
Remove the TARGET_MSG_REQUEST definition for sequencer ram.
aic7xxx.seq:
Fix a few target mode bugs:
o If MK_MESSAGE is set in an SCB, transition to
message in phase and notify the kernel so that
message delivery can occur. This is currently
only used for target mode initiated transfer
negotiation.
o Allow a continue target I/O to compile without
executing a status phase or disconnecting. If
we have not been granted the disconnect privledge
but this transfer is larger than MAXPHYS, it may
take several CTIOs to get the job done.
Remove the tests of the TARGET_MSG_REQUEST field in scratch ram.
aic7xxx_freebsd.c:
Add support for CTIOs that don't disconnect. We now defer
the clearing of our pending target state until we see a
CTIO for that device that has completed sucessfully.
Be sure to return early if we are in a target only role
and see an initiator only CCB type in our action routine.
If a CTIO has the CAM_DIS_DISCONNECT flag set, propogate
this flag to the SCB. This flag has no effect if we've
been asked to deliver status as well. We will complete
the command and release the bus in that case.
Handle the new auto_negotiate field in the tstate correctly.
Make sure that SCBs for "immediate" (i.e. to continue a non
disconnected transaction) CTIO requests get a proper mapping
in the SCB lookup table. Without this, we'll complain when
the transaction completes.
Update ahc_timeout() to reflect the changes to ahc_dump_card_state().
aic7xxx_inline.h:
Use ahc->bus_intr rather than ahc_pci_intr.
two subject ucreds. Unlike p_cansee(), u_cansee() doesn't have
process lock requirements, only valid ucred reference requirements,
so is prefered as process locking improves. For now, back p_cansee()
into u_cansee(), but eventually p_cansee() will go away.
Reviewed by: jhb, tmm
Obtained from: TrustedBSD Project
locks were held, we could be preempted and switch CPU's in between the time
that we set a variable to the list of spin locks on our CPU and the time
that we checked that variable to ensure no spinlocks were held while
grabbing a sleep lock. Losing the race resulted in checking some other
CPU's spin lock list and bogusly panicing.