restart instruction bits in the PSR. As such, we were returning
from interrupt to the instruction in the bundle that caused us
to enter the kernel, only now we're returning to a completely
different bundle.
While close here: add two KASSERTs to make sure that we restore
sync contexts only when entered the kernel through a syscall and
restore an async context only when entered the kernel through an
interrupt, trap or fault.
While not exactly here, but close enough: use suword64() when we
copy the dirty registers from the kernel stack to the user stack.
The code was intended to be be replaced shortly after being added,
but that was a couple of weeks ago. I might as well avoid that it
is a source for panics until it's replaced.
can get (or not) and what we do with them. This fixes the behaviour
for NaT consumption and speculation faults in that we now don't panic
for user faults.
Remove the dopanic label and move the code to a function. This makes
it easier in the simulator to set a breakpoint.
While here, remove the special handling of the old break-based syscall
path and move it to where we handle the break vector. While here,
reserve a new break immediate for KSE. We currently use the old break-
based syscall to deal with restoring async contexts. However, it has
the side-effect of also setting the signal mask and callong ast() on
the way out. The new break immediate simply restores the context and
returns without calling ast().
of "dumb" PCI-based serial/parallel boards get a hint how to enable
them.
I wasn't sure about the ia64, pc98, powerpc, and sparc64 archs whether
they'd support puc(4) or not.
extended irq lists. If the resource has a trailing byte but not the full
resource string, do not attempt to parse the resource string. This fixes
panics on transition to battery and shutdown for Larry. Patch has been
submitted to vendor and they will incorporate in next release.
Tested by: Larry Rosenman <ler@lerctr.org>
PR: kern/56254
page_alloc() function from the slab_zalloc() function. This allows us
to unconditionally call uz_allocf().
- In page_alloc() cleanup the boot_pages logic some. Previously memory from
this cache that was not used by the time the system started was left in
the cache and never used. Typically this wasn't more than a few pages,
but now we will use this cache so long as memory is available.
by accepting the user supplied flags directly. Previously this was not
done so that flags for the same field would not be defined in two
different files. Add comments in each header instructing future
developers on how now to shoot their feet.
- Fix a test for !OFFPAGE which should have been a test for HASH. This would
have caused a panic if we had ever destructed a malloc zone. This also
opens up the possibility that other zones could use the vsetobj() method
rather than a hash.
but for CPL != 0. For some reason yet unknown it is possible for the
CPL to be 2. This would previously be counted as kernel mode, which
resulted in nasty panics. By changing the test it is now treated as
user mode, which is more correct. We still need to figure out how it
is possible that the privilege level can be 2 (or 1 for that matter),
because it's not used by us. We only use 3 (user mode) and 0 (kernel
mode).
don't cache as many items.
- Introduce the bucket_alloc(), bucket_free() functions to wrap bucket
allocation. These functions select the appropriate bucket zone to
allocate from or free to.
- Rename ub_ptr to ub_cnt to reflect a change in its use. ub_cnt now reflects
the count of free items in the bucket. This gets rid of many unnatural
subtractions by 1 throughout the code.
- Add ub_entries which reflects the number of entries possibly held in a
bucket.
IF_HANDOFF() does it for us behind the scenes. Remove the extra call
to re_start() otherwise we try to transmit twice.
In re_encap(), fix the code that guards against consuming too many
descriptors in the TX ring so that it actually works. With the
new 8169S chip, I was able to hit a corner case that drained the
free descriptor count all the way to 0. This is not supposed to
be possible.
reserved bits in the port that must be zero are 24:30, not 20:30. Bits
16:23 are used to set the bus number. This meant that when we tested for
config mechanism #1, if the previous PCI configuration transaction sent
used a bus number greater than 15, one of the bits in 20:23 would be
non-zero and we would fail to use config mechanism #1 and thus fail to see
that PCI existed on the machine at all.
Obtained from: Shanley's PCI System Architecture book
Tested by: des
Proxied through: njl
archaic at this point in time. Pretend nobody runs FreeBSD 1.x anymore
in order to not confuse people needlessly.
Laplink support probably doesn't even work at this point in time anyway...