Make gratuitous style(9) fixes (me, not the submitter) to make the aio
code more readable.
PR: kern/12053
Submitted by: Chris Sedore <cmsedore@maxwell.syr.edu>
Do not not not call m_freem() in the txeof routines. Let the netisr routine
do it. This also makes the tx netisr queuing much simpler (I can just use
another ifqueue instead of the mess I had before.)
Thanks to Bosko Milekic for making me actually think about what I was
doing for a minute.
Note1: the correct interrupt level is invoked correctly for each driver.
For this purpose, drivers request the bus before being able to
call BUS_SETUP_INTR and BUS_TEARDOWN_INTR call is forced by the ppbus
core when drivers release it. Thus, when BUS_SETUP_INTR is called
at ppbus driver level, ppbus checks that the caller owns the
bus and stores the interrupt handler cookie (in order to unregister
it later).
Printing is impossible while plip link is up is still TRUE.
vpo (ZIP driver) and lpt are make in such a way that
using the ZIP and printing concurrently is permitted is also TRUE.
Note2: specific chipset detection is not done by default. PPC_PROBE_CHIPSET
is now needed to force chipset detection. If set, the flags 0x40
still avoid detection at boot.
Port of the pcf(4) driver to the newbus system (was previously directly
connected to the rootbus and attached by a bogus pcf_isa_probe function).
there is nothing we can do about it. In fact, after further review
there simply are not very many instances of the two structures NFS
checks for 'bloat' so I've decided to simply rip the checks out entirely.
Submitted by: Andrew Gallatin <gallatin@cs.duke.edu>
- Add vendor/device ID for Corega USB-T ethernet adapter to necessary
places so that it will work with the kue driver.
- Add vendor/device ID for CATC Netmate devices for driver to be added
soon.
- Get really crazy about netisr stuff: avoid doing any mbuf allocations
or deallocations at splbio/splusb.
- Fix if_aue driver so that it works with LinkSys USB100TX: you need
to flip the GPIO bits just the right way to put the PHY in the right
mode.
to sleep). Locking 101, part 2: do not look at buffer contents after
you have been asleep. There is no telling what wonderous changes may
have occurred.
This seems to be responsible for a bunch of panics where the process
sleeps and something else finds softupdates "locked" when it shouldn't
be. This commit is unreviewed, but has been a big help here.
Previously my boxes would panic pretty much on the first fsync() that
wrote something to disk.
is very likely to become consensus as recent ietf/ipng mailing list
discussion. Also recent KAME repository and other KAME patched BSDs
also applied it.
s/__ss_family/ss_family/
s/__ss_len/ss_len/
Makeworld is confirmed, and no application should be affected by this change
yet.
it is no longer sufficient to get a lock on a buffer to know
that its write has been completed. We have to first get the
lock on the buffer, then check to see if it is doing a
background write. If it is doing background write, we have
to wait for the background write to finish, then check to see
if that fullfilled our dependency, and if not to start another
write. Luckily the explanation is longer than the fix.
a vnode has not been written (which would clear certain of its
dependencies). The problems arises because fsync with MNT_NOWAIT
no longer pushes all the dirty blocks associated with a vnode. It
skips those that require rollbacks, since they will just get instantly
dirty again. Such skipped blocks are marked so that they will not be
skipped a second time (otherwise circular dependencies would never
clear). So, we fsync twice to ensure that everything will be written
at least once.
layout. It seems that I cleaned it up a bit too much and confused a few
if () {
if () {
} else {
}
}
statements in the obvious manner.
This allows the driver to transmit packets again. *sigh*
Stop the recurring feeling of deja vu
Stop the recurring feeling of deja vu
Stop the recurring feeling of deja vu
and debounce the eject messages. We now mark the socket empty in the
interrupt handler, rather than after we've disabled the socket which
happens "much later".
packets into a single buffer, and set the DC_TX_COALESCE flag for the
Davicom DM9102 chip. I thought I had escaped this problem, but... This
chip appears to silently corrupt or discard transmitted frames when
using scatter/gather DMA (i.e. DMAing each packet fragment in place
with a separate descriptor). The only way to insure reliable transmission
is to coalesce transmitted packets into a single cluster buffer. (There
may also be an alignment constraint here, but mbuf cluster buffers are
naturally aligned on 2K boundaries, which seems to be good enough.)
The DM9102 driver for Linux written by Davicom also uses this workaround.
Unfortunately, the Davicom datasheet has no errata section describing
this or any other apparently known defect.
Problem noted by: allan_chou@davicom.com.tw
drive the transmitter, we have to check the interface's send queue in the
TX end of frame handler (i.e. the usb bulk out callback) and push out new
transmissions if the queue has packets in it and the transmitter is
ready. But the txeof handler is also called from a USB callback running
at splusb() too.
Grrr.